Ces:9

.

0 UTLINES
 of

BRITISH FUNGOLOGY.

OUTLINES

OF

BRITISH FUNGOLOGY;

CHARACTERS OF ABOVE A THOUSAND SPECIES OF FUNGI,

A COMPLETE LIST OF ALL TIIAT HAVE BEEN DESORIBED AS NATIVES OF \mathbb{C} fre 解ritisty

BY THE

LONDON :
LOVELL REEVE, IENRIETVA SIREET, COVENI GARDEN.
1860.
"Various as beauteous, Nature, is thy face; all that grows, has grace. All are appropriato. Bog and marsh and fen Aro only poor to undiscerning men. Heromay tho nice and curious eye explore How Nature's hand adorns tho rushy moor; Beauties aro theso that from the view retire, But will repay th' attention they require."

Crabbe's Lovers' Journcy.
"J'ai pensé qu'il mo serait plus facile do descendre ensuite du tout à la partic, que de monter de la partie au tout. C'est nn axiome algébriquo qui veut quo l'on procòde dn connu à l'inconnu, et nou do l'ineonnu au connu." - Comte de Monte Cristo, chap. slvii.

MRS. LLOYD WYNNE, of coed cocit, in the county of denbigh, This Tetork is Finscriber,

 AS A SMALL TRIBUTE TO THE ZEAL WITII WHICH SHEIAS STUDIED THE NUMEROUS FUNGI OF HER BEAUTIFUL COUNTIRY,

AND IN ACKNOWLEDCMENT OF THE MANY ACTS OF KINDNESS

WIIICII SHE HAS CONFERRED UPON

THE AUTHOR.

PREFACE.

Trie objeet of this Work is to furnish matcrials for the eorrect determination of the larger British Fungi, and such only as require nothing more than a common lens for their examination. In consequence, all microseopic details have, as far as it was possible, been avoided, though to meet the wishes of several seientific friends, a complete list of the more minute speeies is appended, together with references by which the plaees in which those species which have been determined as British since the publication of the 'English Flora,' are recorded or described, may be readily found. A Glossary of the less familiar terms, and a list of most of the authors refcrred to in the descriptive part, have been added, in the hope that they may prove useful to students.

Those persons who may wish hereafter to extend their rescarches, will find that they have made a good beginning by the study of the larger species, the determination of which, properly eonducted, will prepare them for a much more eorrect appreciation of the limits within whieh the more obscure Fungi arc eomprised. The eontrary practice of empirically
determining the more minute speeics without any notion of their characters, variations, and structure, will end in nothing sound and satisfactory, while few excreises of the mental powers ean be more improving than a diligent study of sueh a genus as Agaricus.

I wish it to be understood distinetly that I have not aimed at originality in defining the genera and species, but have adopted the best characters wherever I could find them, and I regret that, from an accident in transmission, I have not been able to avail mysclf of more than a small portion of Frics's latest work on the Hymenomycetes, which is unpublished.

Of the figures it will be sufficient to say that the greater part have been drawn by Mr. Fitch, whose talents as a drauglitsman are too well known to require any recommendation. To Mr. Broome, who has for so many years becn my fellow-labourer, I have been indebted for much assistance in the course of the work, as also to Mr. Currey. It is to their labours principally that the cnormous increase in the list of Fungi since the publication of the 'English Flora' is due, amounting now to more than 2,380 species.

King's Cliffe,
August, 1860.

EXPLANATION OF THE PLATES.

PLATE I.

Fig. 1. A. Agaricus grammocephalus.
a. spores.
b. spicules or stcrigmata.
c. sporophores or basidia.
d. tissue of trana.
B. A. cretacelus.

Fig. 2. Peziza cupularis.
a. ascus.
b. sporidium.

Fig. 3. Hymenogaster tener.
Showing spore surrounded by a sac, which sometimes contains a sceond spore.

Fig. 4. Puccinia graminis.
Fig. 5. Tilletia Caries.
a. spore sprouting, and crowned with processes.
b. processcs anastomosing.
c. one of ditto, bearing sceondary spores (after Tulasne).

Fig. 6. Badhamia.
a. eyst, with spores.
b. separate spore, to show that it is granulated where exposed, but smooth where covered.
c. Enerthenema elegans.

Fig. 7. a. Peronospora infestans, with hypha, ereet threads, and spores.
b. Peronospora eurta.

Fig. 8. Gymmosporium fulvum, Berk, and Curt.
Fig. 9. a. Ascosporium deformans.
b. sporidia simulating yeast-globules.
c. A. bullatim, to show their further growth.

Fig. 10. Tympanis saligua. Asei and stylospores on the same hymeniun.

Fig. 11. Neetria inaurata.
a. elivate asei.
b. cylindrieal asci.
c. sporidia from the latter.

Tig. 12. a. sporidium of Hypoxylon fuscum.
b. sporidium of Sphæria rubella.
c. sporidium of S . palustris.
d. sporidium of Yalsa hapalocystis.
e. sporidiun of Massaria fœedans.
f. sporidium of Sphæria macrotricha.
g. sporidium of Sphæria siparia.

Fig. 13. a. stylospores of Cenangium Fraxini.
b. spermatia of the same. The former from the base of the pyeuidinm, the latter from the upper part of the walls.
c. spermatia of Peziza blandula, Tul., from the hymenimm (both after Tulasne).
d. spermatia of Valsa hypodermia.

PLATE II.

1. Merulius lacrymans, nat. size, with a portion of the hynenium magnificd.
2. Crucibulum vulgare, nat. size and slightly magnified, with two of the sporangia more highly magnified.
3. Cyathus striatus, nat. size and slightly magnificd, with two of the sporangia more highly magnified.
4. Podisoma Juniperi-Sabinæ, nat. size.
5. Gymnosporangium Juniperi, nat. size.
6. Helotium versiforme, nat. size, with a scetion magnificd.
7. Tremella sarcoides, nat. size, with a section magnified.
8. Balanophora involucrata, Hook. f., nat. size.

PLATE III.

1. Agaricus phalloides, and section, half nat. size.
2. A. strobiliformis, young, nat. sizc.
3. A. excelsus, and section, half nat. size.
4. A. vaginatus, and section, half nat. size.
5. A. Ceciliæ, and section, half nat. size.
6. A. rachodes, and scetion, half nat. sizc.
7. A. cristatus, and section, nat. size.

PLATE IV.

1. A. melleus, and scetion, one-third nat. size.
2. A. equestris, two-thirds nat. size.
3. A. imbricatus, and scction, half nat. size.
4. A. sulfurcus, and scetion, two-thirds nat. sizc.
5. A. gambosus, and section, half nat. size.
6. A. albus, and scetion, two-thirds nat. size.
7. Λ. nurlus, and section, small specimen.

PLATEV.

1. A. personatus, and section, small specimen.
2. A. infundibuliformis, and section, smạll specimen.
3. A. laccatus, and scetion, nat. size.
4. A. radicatus, two-thirds nat. size, and section.
5. A. fusipes, and scetion, nat. size.
6. A. stipitarius, nat. size, with pileus and section magnified.
7. A. dryophilus, and section, nat. size.

PLATE VI.

1. A. pelianthinus, and section, nat. sizc.
2. A. galopus, nat. size, with scetion magnificel.
3. A. Iris, nat. sizc, with section magnified.
4. A. vulgaris, with section, nat. sizc.
5. A. stylobates, nat. size, with section and base of stem magnified.
6. A. tenerrimus, nat. size, with scction and scparate plant magnified.
7. A. pterigenus, nat. size, with two individuals and section magnificd.
8. A. pyxidatus, nat. sizc, with scction magnified.
9. A. mitis, nat. sizc, with section magnified.

PLATE VII.

1. A. bombycinus, two-thirds nat. size, with section nat. sizc.
2. A. Loveianus, on A. nebularis, two-thirds nat. size, with section nat. sizc.
3. A. speciosus, two-thirds nat. size, with scetion nat. size.
4. A. leoninus, with section, nat. size.
5. A. chrysophæus, with section, nat. size.
6. A. clypentus, one-third nat. size, improperly referred in the text to A. rhodopolius.
7. A. prunulus, with scetion, half nat. size.

PLATE VIII.

1. A. precox, with section, nat. sizc.
2. A. adiposus, with section, nat. size.
3. A. mutabilis, with seetion, nat. size.
4. A. fastigiatus, one-third nat. size, with section uat. size.
5. A. rimosus, two-thirds nat. size, with section nat. size.
6. A. treehisporus, with seetion, nat. size.

Plate IX.

1. A. crustuliniformis, with section, nat. size.
2. A. longienudus, with seetion, nat. size.
3. A. melinoides, nat. size, with section magnified.
4. A. semiorbicularis, nat. size, with section magnified.
5. A. reticulatus, with section, nat. size.
6. A. mollis, with section, nat. size.
7. A. Rubi, nat. size, with section magnified.

PLATE X.

1. A. variabilis, nat. size, with section magnified.
2. A. eampestris, dark var., two-thirds nat. size, with scection nat. size.
3. A. campestris, another variety, with section, nat. size.
4. A. arvensis, small speeimen.
5. A. eretaceus, two-thirds nat. size, with section magnified. Variety with the stem less decidedly sunk into the pileus.
6. A. squamosus, two-thirds nat. size, with seetion nat. sizc.

PLATE XI.

1. A. fascieularis, with section, nat. size.
2. A. velutinus, with section, mat. size.

3, 4. A. appendiculatus, in different conditions, nat. size, with see tions slightly magnified.
5. A. Fomiscecii, mat. size, with seetion magnificel.
6. A. fimiputris, nat. size, with seetion slightly magnified.
7. A. separatus, two-thirds nat. size, with seetion mat. size.

PLATE XII.

1. Coprinus atramentarius, slightly reduced, with section nat. size.
2. Bolbitius tener, with section, nat. sizc.
3. Cortinarius callochrous, with section, half nat. size.
4. C. anomalus, two-thirds nat. sizc, with section nat. size.
5. Paxillus involutus, small specimen, with scetion.
6. Paxillus panuoides, nat. size.
7. Gomphiclius graeilis, nat. sizc.

PLATE XIIT.

1. Hygrophorus distans, with section, nat. sizc.
2. Lactarius insulsus, small specimen, with section.
3. L. piperatus, small specimen, with scetion.
4. L. scrifluus, with scction, nat. size.
5. Russula hetcrophylla, two-thirds nat. sizc, with section nat. sizc.
6. R. vircscens, with scetion, two-thirds nat. size.
7. R. nitida, two-thirds nat. size, with scction.
8. R. alutacea, two-thirds nat. size, with scetion.

PLATE XIV.

1. Cantharcllus aurantiacus, small specimen, with section.
2. C. retirugus, nat. size.
3. Marasmins urcus, with section, uat. size.
4. M. peronatns, with section, small specimen.
5. M. Oreades, with section, nat. size.
6. M. insititius, nat. size, with section slightly maguified.
7. M. rotula, nat. size, with section magnificd.
8. M. graminum, nat. sizc, with scetion magnified.

> PLATE XV.

1. Hygrophorus cburncus, with section, nat. sizc.
2. Lentinus Dunalii, with scetion, nat. size.
3. Lenzites betulina, with seetion, nat. size.
4. Boletus parasitieus, nat. size, on Scleroderma, not on Elapkomyces, as wrongly stated in the text.
5. Boletus luridus, with seetion, small speeimen.
6. B. edulis, with section, half nat. size.

PLATE XVI.

1. Polyporus lentns, with seetion, nat. size.
2. P. lueidus, mat. size.
3. P. sulfureus, slightly redueed.
4. P. spumeus, nat. size.
5. P. ulmarius, half nat. size, with seetion.
6. P. vulgaris, nat. size, with pores magnified.

PLA'TE XVII.

1. Fistulina hepatiea, small speeimen, with tubes magnified.
2. Hydnum repandum, with seetion, nat. size, and seetion magnified.
3. H. udum, nat. size, with spines magnified.
4. Thelephora anthocephala, nat. size.
๖. T. mollissima, nat. size.
5. T. sebaeea, nat. size, with the border magnified.
6. Stereum hirsutum, nat. size.

PLATE XVIII.

1. Aurieularia lobata, nat. size, and seetion magnified.
2. Clavaria amethystina, small speeimen.
3. C. rugosa, nat. size.
4. C. umbrina, nat. size.
5. C. strieta, nat. size, and tip of branel magnified.
6. Bulgaria sareoides, nat. size, with seetion.
7. Hirneola Auricula-Juder, nat. size, with sectiou magnified.
8. Daerymyces stillatus, nat. size, and section magnified.

PLATE XIX.

1. Cortinarius bolaris, nat. size, with section.
2. Nyctalis parasitica, nat. size, with section.
3. Marasmius Wynuei, nat. size, with scction.
4. Lentinus cochleatus, nat. size, with scction.
5. Dedalea quercina, small specimen, with section.
6. Cratercllus cornucopioides, nat. sizc.

PLATE XX.

1. Hydnangium carotæcolor, nat. sizc, with section magnified.
2. Hymenogaster citrinus, nat. size, with section magnificd.
3. Planllus impudicus, nat. size, with scetion.
4. Genster fimbriatus, nat. size.
5. Bovista nigrescens, nat. size.
6. Bovista plumbea, nat. size, with section.
7. Lycoperdon ceelatunt, nat. size.
8. Rcticularia umbrina, nat. size, with capillitiun (a) maguificd.

PLATE XXI.

1. Cyathus vernicosus, nat. sizc and magnified. Two sporangia more magnificd.
2. Sphærobolus stellatus, nat. size and magnified.
3. Anthina flammea, nat. size.
4. Helvella crispa, nat. size, with section.
๖. Morchella esculenti, nat. size.
5. Verpa digitaliformis, nat. size.
6. Spathularia flavida, nat. size.

PLATE XXII.

1. Leotia lubrica, nat. size, with scction.
2. Gcoglossum liirsutum, nat. size and magnified.
3. G. olivaceum, var., nat. size.
4. Peziza badia, nat. size.
5. P. micropus, nat. size.
6. P. reticulata, nat. size, with section.
7. Bulgaria inquinans, nat. size, with section.

PLATE XXIII.

1. Ascobolus vinosus, nat. size and magnified.
2. Tuber æstivum, nat. size, and section magnified.
3. Elaphomyces variegatus, nat. size aud magnified.
4. Cordiceps militaris, nat. size, with head and perithecia magnified.
5. C. entomorrhiza, nat. size, with sections magnified.
6. C. alutacea, nat. size, with section.
7. Ergot, with C. purpurea, nat. size and magnified.

PLATE XXIV.

1. Xylaria Hypoxylon, nat. size and magnified.
2. X. bulbosa, nat. size and magnified.
3. Hypoxylon ustulatum, nat. size and magnified.
4. H. multiforme, nat. size and magnified.
5. Sphæria Bombarda, nat. size and magnificd.
6. Nectria Peziza, nat. size and magnified.
7. Endogone pisiformis, nat. size and magnified.
8. Coprinus Hendersonii, nat. size, and section magnified.

ADDENDA.

p. 2. Note 2. The common usage of the words Pilz and Schwamm is not without exception; Nagel Sehwämme, for example, is the common name of Agaricus eseulentus. See p. 118.
p. 7. The dry-rot in fir-built ships is caused by Merulius laerymans, but in oak-built ships by Polyporus hybridus.
p. 10. Of the Orders mentioned in this page, Phragmotrichacei has been suppressed altogether, and Ecidiacei has been substitutcd for Caomacei, as affording a more natural group.
p. 44. Much against my will, I am forced to adopt the genus Peronospora as limited by Caspary, not by Corda, in consequence of the double fruit so different from anything in genera allied to Botrylis, as far as they are at present known.
p. 59. De Bary believes that Asterophora is merely a conidiiferous state of Nyctalis; Tulasne however adheres to the older notion.
p. 72. The best remedy, perhaps, is creosotc.
p. 252. After P. Vaillantii, insert-
77. P. hybridus, B. and $B r$.; white; mycelium thiek, forming a dense membrane or creeping branched strings; hymenium breaking up into arcæ; pores long, slender, minute.-Boletus hybridus, Sow. t. 289, 387, f. 6.

On oak, in ships, etc. The Dry-rot of our oak-built vessels. This spceies seems hitherto to have been almost neglected by authors, the latter figure only being quoted, whieh exhibits only a part of the charaeters.
p. 268. After Thelephora byssoides, inscrt-

13*. T. sebacea, Fr.; effused, betwcen fleshy and waxy, inerusting, at length hard, various, tubcrculated, or resembling stalactites, dirty-white ; eircumference fringed. (Platc 17, fig. 6.)

On grass, etc. Common.
p. 309. After Cribraria intermedia, insert-
2. C. intricata, Schrad. On decayed fir-stumps, Wcybridge, F. Currey. July, 1860.
p. 368. I believe Peziza Godroniana, Mont., is not distinct from P. trieolor, Sow.
p. 372. After Helotium ochraceum, insert-

21*. H. imberbe, Fr. On decortieated willow, A. Jerdon. Mossburnford, 1860.

CORRIGENDA.

p. 13. For Irymenangium read Iymenogaster.
p. 81. For Polyporus igniarius read P'. fommatarizs.
p. 87. For 13 road 10.
p. 91. For Plate 1 read Plato 3.
p. 231. For Elaphonyces rad Scleroderma.

OUTLINES

or

BRITISH FUNGOLOGY.

Fintroductory fatter.
CHAPTER I.
PRELIMINARY OBSERVATIONS.
Every one is more or less acquainted with the soft, fugitive, variously coloured, sueculent plants, which abound everywhere in our woods and meadows, and which are known under the common names of Toadstools, Mushrooms, or Champignons, according as they arc objects of disgust or admiration, from their real or supposed poisonous or nutritious qualities. While therefore the former are, in general, kieked on one side, or trodden down, the latter, in proportion to the degree of knowledge possessed, are earefully gathered and turned to use. There is, however, no general word in our language which will comprehend even the whole of this group, much less the vast tribe of plants which are classed with them in every Natural botanical arrangement. Popular knowledge, indeed, goes sometimes far cnough to associate with them some of the Fungi which grow on the trunks of trees, as the nearly smooth Polyporus of the birch, and the sealy speeies of
the ash and walnut, which are commonly ealled Sapballs, or the hard eorky kinds, one of which supplies the Amadou of commeree ; but there is no general eoneeption that the multitudes of parasites which grow on dead and living plants, frequently indueing disease or deeay, the mould whieh runs over our fruit and provisions, or the yeast of beer and mother of vinegar, are closely allied productions; if, indeed, the very existence of some amongst them is recognized at all. We are obliged, therefore, to have reeourse to the Latin language for a general word to eomprehend the whole tribe, which is denominated Fungi. An objection, indeed, has been raised to the term F'ungology, which indieates a knowledge of the whole tribe, as composed at the same time of a Greek and Latin word. The word is however like many other spurious words vory gencrally received; and if the objeetion should be considered insuperable, we have but to substitute that of Myeology, which is at onee correct in etymology and comprehensive enough to inelude all we wish. The word Fungus may however in any ease be retained as expressing these plants in common parlanee, only we must take eare, if we do not use the more English-looking word Fungal, not to speak, as is too frequently the ease, of a Fungi,* which is at onee grating to the ear, and utterly intolerable. If Fungus be considered as an English word, as it is used indeed by some of our older authors, the plural will be Funguses; but there is then something unpleasing in the sound, and the term Fungi is certainly to be preferred. \dagger

[^0]What then, generally speaking, are the plants comprehended under this denomination? Now it is very diffieult to give a striet definition whieh will comprise every individual genus and speeies of the whole group. It would lead me into diseussions far too deep at present, to enter into the reasons of this diffieulty; nor eould they be understood without some previous knowledge of the neighbouring tribes of Liehens and Algæ, whieh I am not at liberty to assume,* or indeed of the intimate relations whieh exist generally between contiguous groups of organized beings, insomuch that it is often extremely difficult to distinguish even a plant from an animal. It is prineipally amongst microseopieal objeets that sueh perplexities oceur, though a few eases of diffieulty arise where the true position of a plant eannot at onee be obtained from the mere habit, without attention to the nature of the fruit. \dagger

Without any striet definition then at present, I shall proeeed to eall attention to a few of the various plants comprised in the study of Myeology, from whieh something like a general notion of the subjeet-matter may be gathered.

If we take the eommon Mushroom (Plate 10, fig. 2) as our point of departure, we have the type of an enormous group, eharaeterized by a hat or bonnet-shaped receptacle (pileus), supported by a stem, and furnished beneath with a number of gill-like plates (lamelle), whieh deposit, when plaeed on paper, a vast quantity of dust-like bodies, to whieh, though reproduetive, the name of Spores (Plate 1, fig. 1. a.) has been given, to distinguish them from seeds whieh eontain an embryo, while these consist of a two-eoated eell, without the slightest traee of an embryo. These spores are of different colours in

[^1]different speeies, very frequently pure-white, but presenting also pink, various tints of brown, from yellowish and rufous to dark-bistre, purple-blaek, and finally black.

As these colours are aceompanied by peculiar differences of habit, they afford a ready test for grouping the speeies. The greater part of these plants are of rapid growth, and of a soft, cellular substance. They differ greatly in stature, colour, and outward appearance; some are perfeetly smooth, others densely slimy, while many are elothed with silky or downy lairs and bristles, disposed in various ways, and adding greatly to their beauty. Some speeies lave the brightest colours of the rainbow, eombined with the most elegant form and delieacy, while others are eoarse, dull in colour, and unsightly; few are at all persistent, and many when deeayed pass into a loathsome, offensive mass. A partieular group, eommon in hotbeds, is known by the whole pileus, almost before expansion, dissolving into an ink-like fluid. The greater part of these plants spring at onee from the ground or other matrix without any general eovering; but in a few of the more highly organized, there is a general wrapper (volva), (Plate 3, fig. 4,) whieh eneloses the whole plant, bursting and leaving more or less evident traces behind ; while in others the pileus is at first elothed with fibres of greater or less delieaey, which either vanish entirely as it expands, or leave traces behind upon the dise, or at the margin, in whieh latter ease it is ealled a veil (cortina), (Plate 12, fig. 4). Sometimes a membrane is attaehed to the stem, either eonneeted immediately with the volva, or at first spread under the gills, whieh when more or less persistent is ealled a ring (annulus), (Plate 3, fig. 6, 7).

The stem, though very frequently present, does not exist universally. It first beeomes short and exeentrie, and then, from being strietly lateral, vanishes altogether, so that the
pileus presents various forms, as fan-shaped, kidney-shaped, scmiorbicular (dimidiate), and oceasionally becomes attached by the surface of the pileus ; so that the gills are superior instead of inferior, and the pileus is then said to be resupinate (Plate 10, fig. 1).

The Gill-bearing Fungi are generally of a soft substance, but they are not all so. According to the density with which the eells or threads of which they are composed are packed, they present various degrees of hardness, till they assume even a corky substance, and are morc or less persistent. The common fairy ring Champignon, Marasmius Oreades (Plate 14, fig. 5), is a familiar example of the first departure from the common Mushroom type, and in consequence of its less watery character, it is easily preserved in a dry state for culinary purposes. The Dædalea of the birch, Lenzites betulina (Plate 15, fig. 3), a widely distributed species, gives a good cxample of a still further hardening of the gills, while in that of the oak, Dredulea quercina (Plate 19, fig. 5), the substance is as firm as cork, or, in parts, as hard as wood.

There are a few Fungi in which the gills assume the form of folds or veins, departing thus from the more common type. The Chantarelle, for instance, Cantharellus cibarius, which is such an ornament of our woods from its bright melon-like colour and grateful odour, is a good example. The folds in some species pass into mere veins, and in the very lowest the fruit-bearing surface (hymenium) is all but even, thus paving the way to a group whieh we shall have to speak of presently.

In a few speeies there is a gelatinous stratum cither external to the pilcus or inserted in the midst of the general mass of its tissue ; but in general this clement, which is so important in one group, is but slightly developed, and never constitutes the whole or major part of the tissue.

In some of the species of Gill-bearing Fungi, cspeeially where the substance becomes tough and hard, there is a tendeney in the gills to run into eaeh other by means of lateral processes or veins, and so to make pores. The Fungi of this first division are known under the general name of Agaricini, or Mushroom-like Fungi. Almost all the species are of eonsiderable dimensions; a very few only, as the pretty holly-leaf Agaric, with its long bright bristles, require a common lens to see their beanty.

In a very important group of Fungi, however, the pores are the esseutial character, as the gills are in those we have just deseribed. These pores may be partially or entirely frce, as in the genus* Fistulina (Plate 17, fig. 1), with whieh most are familiar under the form of the dark-red Fungus whieh is so eommon on the trunks of old oaks, and which when divided looks very like beet-root, the whole plant resembling an ox-tongue. In gencral however they are elosely paeked and more or less intimately united, sometimes separating easily from each other, and sometimes inseparable. The former condition oceurs in the most eharacteristic genus of the group, Boletus (Plate 15, fig. 4, 5, 6), which under a variety of forms adorns our woods or the seanty herbage under old trees, more rarely appearing on hedgesides, or in the open fields. Under fir-trees a bright-yellow speeies is extremely eommon, and one of a more sombre tint where larch is predominant. Sometimes they grow in conspicuous rings, and sometimes they attract notice from the instantaneous ehange which they undergo, when brokeu and divided, from white or yellow to deep blue. This ehange was long a souree of perplexity to those who examined it, but it is now known to depend upon the aetion of ozone upon the juices.

[^2]All the true speeies of Boletus are fleshy, but they are closely conneeted with one of the largest genera of Fungi, the Polypori (Plate 16, fig. 1-6), which exhibit every gradation, from great succulence to the hardness of wood, in their multitudinous species. The scaly Polyporus (P. squamosus), so eommon on ash; the hispid, ferruginous P. hispidus, which abounds on apple-trees; the coriaceous P. versicolor, with its velvety pileus and many-coloured zones, so eommon on stumps and felled wood; and the hard, hoof-shaped P.igniarius, to be found everywhere in plum-orchards,-are examples of different conditions familiar to us all. Multitudes of other forms occur, distinguished by the presence or absence of a stem, the complete attachment of the pileus to the substance on which it grows, so that the whole plant consists of resupinate pores, by the clothing of the pileus, by the nature of the pores, etc. Many of these are extremely common, and others as rare, and some run so elosely into each other that the species are very difficult to distinguish. In a few foreign species the pores are so large that they very closely resemble a honeycomb, and in others, almost the whole plant is of a gelatinous texture. Such also is the case in a rare British species of the genus Merulius, which contains the well-known Dry-rot, Merulius lacrymans (Plate 2, fig. 1), so destructive to our ships and domestie buildings. The walls of the pores are here mere veins, and there is a elose eonnection with some of the lower forms of the Gill-bearing Fungi. The Pore-bearing Fungi are included under the common name of Polyporei.

Oecasionally the walls of the tubes or pores are broken up; and as this takes place in an early stage of growth, the whole surfaee of these proccsses is eovered with the fruetifying cells, or, in other words, with the hymenium.

This pares the way to a third group of some importanee,
which may not however be so familiar to inany of my readers as the two former. The existence of prickles, or spinc-like processes, on the under surface of the pilcus in the more typical genera and species, is the characteristic mark, as gills and tubes were of the two former. The pretty Hydnum auriscalpium, whieh is common upon fir-cones, will have attracted the notice of many from the elegance of its form and colouring ; and the esculent H. repandum (Plate 17, fig. 2), which is a common inhabitant of our woods, must be known to every one who has observed the differenees which exist among these plants. There are, however, abundant species which will reward a closer researeh by their own peculiar beauties. One or two are gelatinous, and a few acquire considerable firmuess of texture. Some consist almost entirely of spines, with scarcely any pileus, while others are as regular in form as a Mushroom. A few are repeatedly branched, resembling a cauliflower. In one genus, Hericium, which may perhaps reward future researches in this country, the spines are extremely large and perfectly erect, and have the appearance of ivory. The Fungi of this third subdivision are called Hydnei, after the typieal genus Hydnum.

We noticed before, that in the lower Gill-bearing Fungi, the hymenium is sometimes almost destitute of folds, thus preparing the way for an important group in which the characteristic point is the absence of projections or depressions on the hymenium. The speeies are often very common and widely diffused. An oak-trunk, when felled and decorticated, is soou covered with a bright-ycllowish, velvety Fungus, with a smooth hymenium of the same colour, Stereum hirsutum (Plate 17, fig. 7), while a felled poplar, left, as is usual, with the bark on, is in like manner adorned with a beautiful and somewhat similar lilac Fungus, Stereum purpureum. They
are searcely ever fleshy, but for the most part coriaceous, with an admixture of waxy, membranous, or gelatinous species. As in the former instances, many are resupinate; but in general, the stem is less common than in the other groups, and when present, not very distinct from the pileus, but confluent with it. In the genus Thelephora (Plate 17, fig. 4, 5, 6) there are slight traces of folds, and in a few species of Stereum there are bristles or bristle-shaped processes, which on a careless view might confound them with the species of the Toothbearing Fungi. They vary extremely in colour, and sometimes assume the brightest blue, the most brilliant vermilion, and other vivid tints. The group is called Auricularini, from some of the most characteristic being ear-shaped.

We have hitherto secn, at least in the higher forms, something like a pileus, which indeed may gradually be attached by its upper surface, so as to present to the eye nothing more than the hymenium. There is however a group in which the pileus vanishes altogether, so that the club-shaped receptacle is covered with the fructifying surface. If the stem is branched, we may have every variety of tree-like form. The yellow Clavaria fastigiata of our meadows, or the white, candle-like bundles, Clavaria vermiculata, so common on our lawns in autumn, are examples familiar to every obscrver of Nature. (Sec Plate 18, fig. 2, 3, 4, 5.) In the one case, each plant is simple; in the other, the whole presents a strongly branched and closely packed mass. Here, again, we have the most beautiful colouring, though several of the finest European species have not yet been noticed in our woods. One or two common species oecur on sticks or fallen trunks, which are decidedly gelatinous in point of texture and consistence. These Fungi are named Clavati, from their club-like form.

There yet remains another group of allied Fungi, distin-
guished by the predominance of the gelatinous element. Rotten sticks in our hedges or woods often present bright, tremulous, gelatinous masses of bright-orange, purple, or dark-brown, which at onee attract our notice, while the trunks of the elder and some other trees afford ear-shaped, flaccid masses, which almost escape notice when dry, but with the first shower are exposed to the most careless observer. Sometimes, again, on an old stump, or at the base of a living oak, cnormous masses are found resembling the convolute intestines of some animal, but distinguished by their rich ferruginous or yellowish tints. These Fungi are very curious in point of strueture, but at present I ann only endeavouring to give a general view of the different objects which form the immediate study of the Fungologist. The Fungi of this group are called Tremellini, from their soft, flaceid character. (Sec Plate 18, fig. 6, 7, 8.)

These six groups form subdivisions of one great association of Fungi, characterized by their hymenium being more or less exposed, and at the same time bearing naked Spores attached to the tips of certain cells called Sporophores (Plate 1, fig. 1.c.), and distinguished from other Fungi with an exposed hymenium in which the reproductive bodies are contained in sacs called asci, and lave the name of Sporidia (Plate 1, fig. 2. a. b.). These distinetions ean be ascertained only by the microscope; but a very little practice will at once decide which strueture prevails in the larger and more conspieuous species. The general name of the division is Hymenomycetes, the hymenium being the prominent eharacter.

The lymmenium, or fructifying surface, has hitherto been more or less exposed. It may indeed at first be concealed, but ultimately it has free access to the air, though, except in the lower species, not to the light. The sceond main division of Fungi has, on the contrary, the fruetifying surface con-
eealed, till the sae in whieh it is contained is ruptured for the dispersion of the spores. This division has reeeived the eommon name of Gasteromycetes. The Puff-balls are the most generally known example. Some of the most eurious and typieal genera in this division do not oeeur in this eountry.

Very few of my readers will probably have observed the underground speeies whieh eonstitute the first British group of this second division. They abound however in many parts of England, and may be deteeted like little tubers by simply raking the surface. One of the largest, Melanogaster Broomeianus is commonly sold as a substitute for Truffles in the market at Bath, and may be familiar to some. They differ, however, materially in strueture from real Truffles, as will be seen hereafter. If the stem of a Boletus were removed, and the pileus eontraeted into a ball, so as to eoneeal the lymenium entirely, we should have a tolerable representation of one of one of these tubers, espeeially if the tubes should beeome eomplieated and sinuous and eonstantly eross one another. Indeed, so mueh is this the case, that the beautiful orangeeoloured speeies, Hydnangium carotacolor, was first taken for a diseased Boletus, and on the eontrary, a badly dried diseased Boletus has been inserted in my own herbarium as an Hydnangium.* This first group is ealled Hypogati, from the subterraneous growth of the speeies whieh it eomprises.

A very eurious group of Fungi is elosely conneeted with these, though the similarity is visible only in a young state; I mean the Phalli (Plate 20, fig. 3). We have but few speeies in this eountry ; but one is the pest of pleasure-grounds, as at Kew, from its odious smell. In a young state they resemble eggs. The pileus (if it may so be ealled) is elosely

[^3]confined within a thiek volva, the inner substanee of whieh is gelatinous, and in this state a distinet lymeninm is visible, eonstrueted as in the preceding group. Soon however the volva bursts, and the hymenium dissolves into a loathsome, fetid mass, whieh is eagerly devoured by flies. Clathrus cancellatus, one of the most beautiful of Fungi, has been detected in the south of England and Irelaud. Its beauty however searecly eompensates for its detestable smell. Some of the foreign species of this group when fresh are exquisitcly beautiful, but all, I believe, partake morc or less of the disgusting odour. These Fungi are ealled eolleetively Phalloidei, from the typieal genus Phallus.

Every one is aequainted with the Puff-balls, whieh by means of the eurious but very rare genus Batarrea, are conneeted with the Phalli. When young their hymenium rescmbles the crumb of bread; but they soon lose their primitive eondition, and pass from a cellular to a semi-liquid state, and then to the dusty condition whiel is known to every child. The common Puff-balls are oceasionally interesting objcets, from the beautiful warts or priekles with which they are adorned, but they are far exceeded in interest by the starry Puff-balls, Geaster (Plate 20, fig. 4), which from their comparative rarity are little known to general observers. They however sometimes oeeur in eonsidcrable abundanee, and never fail to exeite the admiration of all lovers of beautiful forms. There is another genus, Scleroderma (Plate 15, fig. 4), which ean searecly have failed to attraet notiee from the frequeney of one onion-shaped speeies on lawns. The speeies are darker in colour than the Puff-balls, and differ in their thicker, more persistent coat (peridium), and eompaet mass of spores. The subdivision is named Trichogastres, from the hairs or threads which in most eases aceompany the spores.

The Puff-balls, it was remarked, were in their first condition cellular, though so dusty when mature. A large group of Fungi, eontaining multitudes of the most exquisite mieroscopic objects, is distinguished by the early eondition being ereamy, or mueilaginous. They differ in many respeets from other Fungi, and espeeially beeause they seem often quite independent of the substance on whieh they are developed. One species, for instance, was diseovered by Sehweinitz, in Ameriea, growing on iron whieh had been red-hot only a few hours before. I ean myself answer for the true nature of the produetion, as I possess a portion of the original speeimen. I have seen specimens again of another speeies, growing on a leaden eistern at Kew, from whieh it could derive no nutriment. Another was found by Sowerby, on cinders, on the outside of the dome of St. Paul's. In eonsequence of this and of some peeuliaritics in the substance of which they are formed, resembling that of whieh ecrtain Infusoria are eomposed, a very excellent observer, Dr. de Bary, has lately expressed a formal opinion that they are animals; but a suffieient answer to this is the fact that some of the species contain spiral vessels, and have their spores surrounded by a distinet sae, exaetly as in an abnormal condition of Hymenangium (Plate 1, fig. 3, 6). The most familiar exanıple is that of the yellow, frothy, and ultimately dusty substance which is so common on the tan of stoves, and whieh is the plague of eultivators. Some species of Reticularia also are so large as to attraet notice, especially R. maxima, whieh sometimes runs over eueumber-beds, overwhelming everything in its path, and choking the plants. Spumaria mucilago is another conspieuous Fungus of the group, which is far from uneommon on the stems of grasses. Most however of the speeies are too small to attraet general notice, though from the elegance of their form and brillianey
of colouring they occasionally command attention, notwithstanding their diminutive size. The speeies are called Myxogastres, from their carly mucilaginous eondition.

There yet remains another very singular and distinet group of closely allicd Fungi, which contains but a few British species. These however are so curious or beautiful, that they never fail to command admiration. Onc of them, Cyathus vernicosus, is common in turnip-fields or amongst stubble, resembling little cup-shaped saes, full of eggs; and two others are by no means rare, on dcad fern-stems, sticks, ctc. A smaller Fungus, Spherobolus stellatus (Plate 21, fig. 2), is remarkable for its expanding like a little star, and shooting out with prodigious force by the inversion of its inner membrane, a globose mass, which contains the fruit, just like a shell from a mortar. These Fungi are known under the eommon name of Nidulariei, from the nest-like appearance of the more typical specics. (See Plate 21, fig. 1, and Plate 2, fig. 2, 3.)

We now come to a large division of Fungi, of which little is known to the general observer, because almost all its speeies are so small, and in general so devoid of external beauty, that it is only the lover of the microseope who is at pains to study them. A large portion of them are to the naked cye mere black specks upon leaves, twigs, etc., though the strueture of their spores is often very curious. Many, it is believed, are nothing more than eonditions of some of the Fungi which are comprised in the fifth great division of these plants. Some of them have their sporcs contained in a distinctly organized cyst (perithecium);* others are merely conccaled under the bark or cutiele, while others are completcly exposed. In the former

[^4]case the spores are usually simple, in the latter they are often arranged in neeklaee-like threads of greater or less tenaeity. The general name of the division is Coniomycetes, from the dust-like nature of the spores. The four first groups are known under the names of Sphceronemei, Melanconiei, Phragmotrichacei, and Torulacei, the charaeters of whieh will be given in the systematic portion of the work. I can point out no popular representatives of these subdivisions. My more immediate object is simply to give some general notion of the plants comprised in the term Fungi, avoiding as mueh as possible all microseopic characters.

There is still another important group, eonsisting of two divisions, Pucciniai and Cceomacei, of whieh a few species lhave been long observed, though their real nature is often mis-taken,-I mean the Rust, Smut, and Mildew so prevalent and injurious to our eorn-erops, besides a host of species whieh infest other plants while still in a living state. In two gener'a of this group the parasites obtain such large dimensions, and are of so bright a colour, that they ean seareely eseape notice where they abound. To this are referable the jelly-like masses on the different speeies of Juniper (Tab. 2, fig. 4, 5), whieh not only resemble the gelatinous Tremelle in outward aspeet, but in some points of structure, proving elearly the conneetion of the whole group of parasites with the higher Fungi, and stultifying the views of those who regard these produetions as mere states of the eellular tissue of the plants on which they are developed. Of these Fungi there are two groups. The Pucciniei, to which the Wheat Mildew belongs, distinguished by their articulatc spores (Plate 1, fig. 4), and Ccomacei, containing the Bunt, Rust, and other simple-spored, truly parasitie, dust-like Fungi (Plate 1, fig. 5).

Every one is acquainted witl the large division of Fungi
whieh follows, eonsisting of those Moulds whieh bear naked fruit, and are known under the name of Hyphomycetes, from their filamentous character. The Blue-mould of eheese and paste, and the common spceies whieh run over preserves and other stores are familiar examples. Some are so bright in colour and form sueh eompaet masses that they readily attraet notiee; but there are few, if any, whieh do not require the use of the microscope, even for the aceurate examination of their outward forms. Some of these Moulds, again, are mere conditions of other Fungi. Though difficult of examination, they amply repay investigation. They are divided into five groups, Isariei, Stilbacei, Dematiei, Mucedines, and Sepedoniei, of whieh it is not easy to give popular examples. The first two euntain speeies in whieh the threads of whieh the plants are composed are elosely compaeted, so as in some eases to make them resemble the Clavate Fungi mentioned above (p. 9). The red Fungus, so common in gardens on dead currant-branches, forming little searlet, eushion-like masses, is a good example of the second.* The species of the third division eonsist of loose threads, which are mostly dark, as if earbonized ; while the white or purer eoloured Moulds constitute the fourth. The typieal genus of the last subdivision, Sepedonium, is familiar to many, from its transforming the Boleti of our woods into a bright-yellow spongy mass.

This terminates the first series of Fungi, consisting of four divisions, in whieh the fruetifying bodies are naked and exposed. There are, however, other plants included in the term, which differ greatly in structure, but many of whieh are readily recognized by the eommon observer as true Fungi, while others are as minute and obseure as the blaek speeks notieed before. At present we are looking prineipally to outward eharacters. It

[^5]is necessary however to remark, that these productions, instead of naked spores, have fructifying bodics (sporidia) cnclosed in sacs (asci or sporangia), (Plate 1, fig. 2.)

In those Fungi of the second serics which have asci, the receptacle which bears the fructifying stratum, whether exposed or concealed from view, is more or less complicated in structure, while in those which have sporangia, it is looscly filamentous, as in Mucedires. In a few instances however the sporangia themselves are cellular ; but in such eases the true nature of the productions is often somewhat doubtful. On these grounds we have two primary divisions,-Ascomycetes and Physomycetes, whose names are iudicative of their distinet characters of ascus-bcaring and sporangium-bearing Fungi.

The first group, of Ascomycetes, which mects us, is that which is best known, as it includes such productions as the Morel, and the large P eaizce (Plate 22, fig. $4,5,6$), or cup-slaped Fungi, which attract admiration from their form and colours. The scarlet Peziza, common in some districts on sticks, the orange Peaiza of wood, the vesicular Peziza of hot-beds, are all well-known examples, and there are many others of variable size and beauty which will reward researches in our woods. Onc of the most curious, Peziza venosa (Plate 22, fig. 6), is a common inluabitant of the naked soil in woods or gardens in spring, some inches in breadtll, and remarkable for its wrinkled hymenium and nitrous odour. The leading species of the group are mitre-shaped or club-shaped; but the lymenium, and the receptacle on which it is spread, by various gradations, at length form a perfect eup, which in the higher species is borne upon a stem, but in others is perfectly sessile or expanded, in which case it resembles closely those Fungi of the Gill-bearing division, which present a smooth, even hymenium (Auriculurini). These Fungi are called collec-
tively Elvellacei, from the typieal genus Helvella (Plate 21, fig. 4).

A few of the Peziza are subtcrrancan in their labits, and thus pave the way for the Truffles (Tuberacei) (Plate 23, fig. 2), which grow completely beneath the surface, answering to Hy pogeei, p. 11, and which are well-known objeets of commerce. These vary greatly in strneture and in the nature of their fruit. The more common have a rough eorrugated surface, like the fruit of a Pine-apple, but others are perfectly even.

To these sueceed a host of hard or coriaceous species, of whieh scarcely any attract general notice. One of the most conspicuous is the round, black Fungus (Rhytisma acerinum), so common on the leaves of different species of maples. The group is distinguished by the eommon name of Phacidiacei, from the genus Phacidium, of which a pretty species grows on dead oak and beceh leaves.

These are followed by an enormous mass of plants, speeimens of which oceur on almost every stick or stalk which we can pick up in our hedges, woods, or gardens. Some of the finest occur on insects. Those of our own country are in general but little known; but there are few of my readers who have not seen the Caterpillar Fungus of New Zetland, which is one of the finest in the scetion. One of the commonest examples is afforded by the old Splueria Hypoxylon, which grows at the base of stakes, gate-posts, etc., looking like the snuff of a candle. We have one or two larger species, but not so gencrally known. Some recommend themselves to notice by their colour, as Nectria cimabarrina, which is so common ou old sticks in gardeus ; but the attraction of many consists cutirely in the structure of their fruit. The exotie species, which are very abundant, are often remarkable for beauty and singullarity. These Fimugi are called Spheriacei. The elub-shaped
speeies are distinguished from Clavaria by their having their fruit contained in perithecia, which are very conspicuons beneath the eutiele when the plant is divided.

A very distinet division eontains some of the produetions which are commonly known under the name of Mildew. These in a young state are white and mealy, and are known as Hop Mildew, Rose Mildew, ete. ; but as they grow, they form first yellow, then blaek, speek-like saes, which contain a different form of fruit. These sacs are attached to abundant filaments, and therefore approael somewhat in appearance to Moulds. They are called Perisporiacei, from the typical genus Perisporium.

There is yet another small group, of which one genus consists of Fungi which grow principally on animal substanecs, as deeaying hoofs, horns, feathers, etc. These, however, are not very common, and are thercfore little known. The group is called Onygenei, a name alluding to the growth of one of the species on hoofs of animals.

We have still another set of productions which rank amongst Fungi, some of which are popularly known. They are the Sporangium-bearing Fungi noticed above, p. 17. They consist of two groups only, the first of which comprises the dark feltlike Fungi, which run over the leaves of living trees. They are uncommon in Great Britain, and it is probable that they are, in general, conditions of other Fungi. They are called Antennariei, from the threads of some of them when magnified resembling the antenne of beetles. The other contains those Moulds whieh have distinet saes on their threads, and not naked spores. The common Moulds of paste and of rotting pears are well-known instances. The finest British example is Mucor nitens, whiel grows on fatty sulsstanecs, and attains a considerable size. Most of the species, however, are merely microscopic objects.

Such, on a general review, are the objects which engage the study of the Fnngologist. He will not at first, perhaps, be able in every casc to assert at onee, without danger of mistakc, that any given production is a Fungus, becanse some of the Lichens, or cven Algæ, come so near to Fungi. But this is truc only of a limited number of plants which will not naturally eome under his investigation at first. There are multitudes which he can determine satisfactorily without the aid of anything more than a common lens, and to these he will do well to pay attention in the first instance. If he wishes to become aequainted with structure, he must have recourse to a microscope, and lic will then be able better to appreciate the niee shades which separate Fungi from neighbouring elasses of the Vegctable Kingdom. It is a most fatal crror in the student to attach himself in the first instance to the naming of every black speck he may chance to find, without a precise knowledge of structure; for in this case he is sure to cnd as a mere colleetor, without any title to the name of Fungologist.

It may be well to present in a tabular form the general outline which has been presented to my readers, noticing where practieable popular examples of each division.

SPORIFEROUS FUNGI.

1. HYMENOMYCETES.

a. Agaricini. Mushroom. Chantarelle.
b. Polyporei. Sap-balls.
c. Hydnci. Spinc-bcaring Fungi.
d. Auricularini. Stcreum of Oak and Poplar.
c. Cluvati. Clavaria.
f. Tremellini. Jew's-ear.

> 2. GASTEROMYCETES.
a. Hypogrei. Red 'Truffle of Bath.
b. Phalloidei. Common Stinkhorn.
c. Trichogastres. Puff-balls.
d. Myxogastres. Dust Fungus of tanpits.
e. Nidulariei. Birds'-nest Peziza.
3. CONIOMYCETES.
a. Spheronemei.
b. Melanconiei.
e. Phragmotrichacei.
d. Torulacei.

No popular types.
e. Pucciniai. Wheat Mildew.
f. Ccomacei. Smut. Bunt.

4. HYPHOMYCETES.

a. Isariacei. Insect Club Mould.
b. Stilbacei. Searlet Tubercularia.
c. Dematici. Carbonized Moulds.
d. Mucedines. Blue Mould. Yeast and Vinegar Fungus.
e. Sepedoniei. Yellow Boletus Mould.

SPORIDIIFEROUS FUNGI.

5. ASCOMYCETES.
a. Elvellacei. Morel.
b. Tuberacci. Truffle.
c. Phacidiacei. Maple Mould.
d. Spheriacei. Candle-snuff Fungus.
e. Perisporiacei. Hop Blight.
f. Omyyenei. Hoof Fungus.
6. PHYSOMYCETES.
a. Antennariei. Felt Moulds.
b. Mucorini. Bread Mould, Pear Mould.

CIIAP'TER 11 .

NATURE OF FUNGI.

Having given some general notions of the objeets of whieh it is proposed to render an aecount in this volume, I proceed to sueh eousiderations as to their nature, mode of growth, propagation, uses, properties, distribution, and structure, as may come within the seope of an essentially popular treatise, and so far as they ean be explained without entering into abstruse discussions, whieh require a considerable portion of previous knowledge.

The most prominent question which arises naturally may be stated as follows:-Are these productions members of the Vegetable Kingdom equally with the leaf-bearing plants with whieh we are all so familiar; are the species as truly species as those which we meet with amongst them, or are Fungi mere ereatures of aceident, without any stability of elaraeter, and ineapable of any rational arrangement?

Taking Fungi as a whole, there is not a shadow of donbt as to their being true vegetables. Discussions, indeed, onee took plaee in eonsequenee of crroncous observations respeeting some supposed spontaneous motion in their reproduetive bodies, as seen under the mieroscope, as to whether they might not be built up by little animals after the fashion
of eorals; but it is now perfeetly eertain that sueh notions were ill-founded, and that these bodies agree in the main prineiples of growth and strueture with other vegetables. In several speeies the eomplete progress from the minute spore to the perfeet plant has been traeed step by step, till the eirele has been eomplete, and the new spore ready again for reproduetion. In one group alone, as stated above (p. 13), doubts exist as to the real nature of the objeets it contains, because the general mass does not usually consist of real filaments or eells, and the substance of which they are eomposed is of a different ehemieal nature from that whieh forms the framework of all known vegetables.* Ultimately, however, true cells are always produced, and in one genus spiral vessels; and both Mr. Broome and myself have in eertain genera observed distinet saes growing from the fundamental framework and not from the mere slimy mass whieh it eneloses, in whieh the spores are developed, and sometimes from a speeifie point, as in the higher Fungi (Plate 1, fig. 6), the free portion of the spore being rough with granules, while the inner portion, from its eontaet with other spores, is smooth. \dagger Besides, in Lycogala terrestris there is as distinet a fibrillose spawn penetrating the soil as in any Lycoperdon (see Corda, fase. 6, t. 2, fig. 37 ; and text, p. 15). Fries, moreover, in a letter reeeived while writing this, ealls my attention to the early stage of the fruetiferous cells in the genus Polysaccum, and to the amorphous, unetrous, semiliquid state of young Polyporus Schweinitzii, resembling elosely that of an infant AEthatium. Though, however, I have myself little doubt as to these produetions being vegetables, as well as other Fungi, and I am

[^6]supported in this view by Fries, than whom no one is more eminent for taet and niee diserimination, it is right that I should not speak too positively, as the two brothers Tulasuc, who have contributed so much to our knowledge of Fungi, ineline rather, as it should seem, to De Bary's views, which they corroborate in some degree by the faet that many of these productions eontain in their outer eoat such a notable quantity of earbonate of lime, that a strong efferveseence takes place on the applieation of sulphuric acid.

Setting, however, the Myxogastres aside, there is now no question as to the rest. As regards mere substance and duration, undoubted Phenogams vary almost as much as Fungi themselves, while one or two groups of Phenogams, as Raffesiacere and Balanophore, of which an example is given (Plate 2, fig. 8), approaeh in form, substanec, parasitic growth, comparative simplieity of strueture, ete., in many respeets to Fungi. But notwithstanding sueh peeuliarities, they arc as truly Phonogams as plants of other Orders, while in Fungi there is a eharacter which we believe is wholly without example amongst Phenogams, viz. that they absorb oxygen when exposed to light, and give out carbonie aeid, in which particular they resemble animals.

As regards the seeond point, whether the speeies are as definite as in other acknowledged parts of the Vegetable Kingdom, I answer without a moment's hesitation that there is in most cases far less difficulty in determining the limits of speceies. Amongst the Polypori, indeed, the limits are often very difficult to recognize, but if we take the large group of Agarics and its allies, with a few execptions only, it may without doubt be asserted that more certain species do not exist in any part of the organized world than amongst Fungi. The same spceies constantly reenr in the same places, and
if kinds not hitherto detected present themselves, they are either such as are well known in other districts, or species which have been ovcrlooked, and whiel are found on better - experience to be widely diffised. There is nothing like chance about their characters or growtll. It is quite astonishing how few now species have been met with in Sweden since the publieation of the 'Epicrisis' of Frics in 1838, though acutc botanists have studied them most aecurately in the eourse of the last twenty years, and especial attention has been latcly paid to them with a vicw to making as complete a collection as possible of drawings of the fleshy or softer Fungi for the Museum at Stoekholm, and of the fcw novelties which have turned up, some have already occurred elsewherc.*

It is therefore almost useless to advert to the third notion, though a very common onc, which would regard these productions as the creatures of chance, or of a happy coneurrence of circumstances favourable to their growth from inorganic elcments. It is true that they often oceur in unexpected situations, and from their extreme rapidity of development, sometimes scem as if they could not have originated from anything like sced; but as accurate inquiries have now thrown light upon much of the mystcry in which the origin of intestinal worms was but lately involved, so the phenomena whiel attend the growth of Fungi arc gradually rceeiving light, and they are found to follow essentially the same laws as more perfect vegetables.

The notion of equivoeal or spontancous gencration, indecd, is now all but exploded amongst scientific men. The most carcful experiments show that, without pre-existent germs,

[^7]no organized beings are ever produeed from such solutions as eontain matters fit to nourish minute animals or vegetables, though where proper preeautions have not been taken to exelude the possibility of their aceess, they exist in myriads. That the spores of Fungi do get aeeess somehow or other into very unexpeeted plaees is quite another question, and, like many other obseure matters of natural history, may some time or other meet with an easy explanation.*

[^8]
CHAPTER III.

HABITATS OF FUNGI.

It is diffieult to point out any substanee or situation where eonditions exist eapable of supporting vegetation, in which Fungi, in one or other of their forms, may not be developed. The general notion is that Fungi are essentially the creatures of deeay; but this notion arises only from a very limited apprehension of the objeets eomprised under the name; for not only do we find them on putreseent logs or vegetables, but they oeeur sometimes on bare flints, on glass,-as on our window-panes and the lenses of microseopes,-or even on smooth metallie surfaecs; but they establish themselves also in the most poisonous solutions, and in fluids where no deeomposition lass at present taken plaec. But more than this, they are found on living struetures, whether animal or vegetable, at whose expense they grow. About fifteen years sinee, when so mueh was said and written about Fungi in consequence of the interest which was attached to the potato murrain, it was a favourite dietum, even amongst men of some pretensions to seience, that Fungi eould not grow upon healthy substanees. It is, however, now a well-established faet that the most healthy tissues may be affeeted by liungi, though they rapidly beeome diseased under their influenee. Deferring
for the present the eonsideration of this influenee, I shall simply indieate some of the peeuliar situations in which Fungi are oeeasionally found.

Amongst the ligher Fungi, the Coprini (Plate 12, fig. 1), and those species of Ayaricus, as for example A. disseminatus, whieh are most nearly allied to them, are most eaprieious in their habitats. Old damp earpets, naked walls, pestilential drains entirely coneealed from sight, and other anomalous situations, are amongst those in which they assume an oceasional habitat, their proper place for the most part being decayed wood, or the dung of graminivorous animals, whieh elosely resembles it in the Fungi whieh it nourishes. As the Coprini are amongst the most rapid in their growth of any Fungi, as every one knows who has watehed their progress in a new hot-bed, they sometimes appear in the most unexpeeted situations. It is, for instanee, not very uneommon to find them on the dressings of amputated limbs, and surgeons are in eonsequenee sometimes very unjustly eharged with negligenee by persons who are not aequainted with the speed with whieh a Coprinus may pass through every stage of growth from the spore to the perfeet pileus. Where these plantsas, for example, Coprinus radiatus and Agaricus disseminatus -are developed on bare walls, they throw out an enormous quantity of myeelium, in order to avail themselves as much as possible of the moisture of the surrounding air.

Though Fungi eannot exist without a certaiu degree of moisture, they suffer in general from its exeess. A few speeies, however, are never found exeept on substanees immersed in water. The beautiful searlet Mitrula paludosa, whieh is the ornament in summer of every little quieseent drain in some parts of Wales, uniformly grows on leaves or other deeayed regetable matter floating in water, while Vibrissea
truncorum, so remarkable for shooting out its long threadlike sporidia under the influence of the sun, is found on immersed logs or sticks. A fine Spharia, not yet observed in this eountry, is found in Algiels on submarine phænogams, and other instanees oeeur where the daily wash of salt-water has not prevented the growth of Fungi. The ubiquitous Spheria herbarum flourishes even on seaweed thrown up by the waves.

I am not at liberty to reekon as Fungi the eurious Moulds which grow on dead fish, making them conspicuous as they float on the surface of the water by the foggy halo which surrounds them. These produetions differ so essentially in their mode of reproduetion from Fungi in general, that at present it would be rash to speak too positively about them ; but, inasmueh as their peeuliar eharaeters seem to depend entirely upon the degree of moisture to whieh they are exposed, there is some reason to hesitate and to wait for further information. I have no doubt that the Mould whiel is so eommon on flies in autumn, oozing out as it were between their abdominal rings, is a mere condition of one of these anomalous produetions. Nay, it was known long sinee that the same animal whieh, when immersed in water, produeed one of these puzzling plants, when exposed to a slight degree of moisture gave birth to a true Mucor, or Mould.

A gigantie Mould, of a dark shining green when dry, appears frequently on easks, or on the walls in oil-mills. The same speeies oeeurs sometimes in great abuudanee on easks of grease, flourishing in the most wonderful degree, and ultimately exhausting to a great depth the substanee in whieh it grows. As it is far larger than any of the eommon speeies of Mucor whieh grow on fruit or deenying vegetables, it was long eonsidered as belonging to a distinet genus, under the
name of Plycomyces; but this notion is now abolished, and it takes its plaee as the prinee of these powers of putreseence.

One of the most eurious properties of certain Fungi is their eapability of growth in substanees which are in general destruetive to vegetables. Tannin is one of thesc substanees, and yet a Fungus very frequently makes its appearanee on the wood with which the tan-pits are lined. It is perhaps not so surprising, that many speeies prefer spent tan to almost any other substance, though even this cloes not seem favourable to phenogams, exeept so far as it is useful in raising the temperature of the houses in whieh they grow. Many vegetable poisons, as opium, though innoeuous to the plants by whieh they are produced so long as they remain in their proper eells or reeeptacles, arc positively destruetive when mixed with the fluid which is taken up by their roots. More than one speeies of Fungus, however, is developed on extraeted opium, and the faetories in India have suffered greatly from their presenee. Solutions of arsenie, sulphate of iron, sulphate of eopper, etc., though highly eoncentrated, do not prevent the growth of some Fungi of a low order, though at onee destruetive to others. A few years sinee, a little Mould, developed in the solution of copper used for eleetrotyping in the department of the Coast Survey of Washington, proved an intolerable nuisanee. Strange to say, it deeomposes the salt, assimilating the sulphurie aeid, and rejeeting the eopper, whieh is deposited round its threads in a metallie form.* These produetions, indeed, are sometimes referred to Alga, from their submersed mode of growth; but they are mostly eommon species of Mould, and rery distantly related to Alge.

One of these Moulds is somctimes developed in strong wine, as in Madeira. A Monld, however, of a very diffegent liabit

[^9]and eolour (Antennuria cellaris) is peculiarly attaehed to wine-eellars, where it is the pride of the merehant when it hangs about the walls in blaek powdery tufts. It is not, however, the only oeeupant of winc-eellars. There is a Fungus, whose exact eharaeter is unknown, whieh first attacks the eorks of wine-bottles, destroying their texture, and at length impregnates the wine with sueh an unpleasant taste and odour that it is perfectly unfit for usc; while another, cqually obscure as to its kindred, after preying upon the corks, sends down branched threads into the liquid, at length rendering it a mere caput mortuum. Dry-rot, again, is peculiarly attaehed to eellars, to the destruetion of wine-shelves ; and an instanee is on reeord in whieh this or some other Fungus attaeked a cask of wine, and inereased to such an cxtent as to eompletely bloek up the entrance. The wood of the eask was the first objcet of attaek, but the winc supplied a great portion of the sustenanee of this enormous monster, whieh is only equalled by the great eurtain of Dry-rot whieh lately eovered the walls of a sandstonc railway tunnel in the north of England.

Pcrhaps the most eurious cireumstance under whieh Fungi are developed is when they are found in situations apparently completely exeluded from the external air, as the Potato Mould, in the eavities of the fruit of Tomato, Dactylium roserm in the hazel-nut, or a red Penicillium in an egg. The spawn of Fungi, however, is capable of making its way, and that very rapidly, through the elosest struetures. In some cases its progress from without is easily traced, in others it is wholly obscure, and yct in multitudes of instances, as in a large proportion of the Sphectucei, it is quite eertain that it must have penetrated at some period into the matrix, whether in a living or a dead condition. Λ few minute speeies, indeed, have never been found in any other situation
than in the eavities of the eclls of phenogams, or their intereellular spaces. The presenee, however, of the little animal in the cerebral cysts, whieh causes the disease known under the name of 'giddiness' in sheep, was onee equally obseure, and even since its origin is known, the rapidity with whieh the young of the tapeworm of the dog, after it has been swallowed by the sheep, penctrates the brain through a very devious course, is marvel enough to eommand all our powers of faith.

The existence of Fungi on the mueous membranc of animals, or in other situations, will be notieed when I come to the consideration of the diseases produced by Fungi.

Two other eireumstanees, however, require a few lines before I elose this Chapter. The first of these is the oceurrenee of Mould in the inside of bread a few hours after it is baked. This was at one time notoriously the ease with the coarse "pain de munition," or barrack-bread, at Paris. A beautiful red Mould appeared in its very eentre within an ineredibly short space of time. It was, however, found that the spores of eertain Fungi, would bear moist heat equal to that of boiling water without losing their power of germination. They have also considerable powers of resisting frost, but the exaet limits in either ease under varying eireumstanees have not at present been asecrtained.

The other point is the apparently sudden development of fungous matter on eooked provisions, whether animal or vegetable, in very hot weather. As the Fungus thus produced is of a bright blood-red, and often spreads in little jets as if spirted from an artery, it has been supposed to arise from a rain of blood. The production is not, however, so uneommon as is supposed, and may be seen almost every year on some of the larger and more perfeet Fungi when in a state of decay, thonglı
in small quantities. When in abundanee it is very beautiful, and in lot weather it may be eultivated with great ease on riee paste. The growth of these produetions is, however, very eapricious, and I have this autumn in vain attempted to eultivate it, whieh is the more provoking, as its real affinities and strueture are at present very obseure.*

It may be added, in conelusion, that the Fungi whieh attaek animal substanees are for the most part far from niee in their ehoiee of a place of growth, but some whieh produee disease in animals are attaehed to partieular inseets, and a few which grow on deearing hoofs, horns, bones, feathers, wool, or hairs, are never found in any other situations. Leather for a long time scemed to be exempt from any Fungi save the commonest species of Mould, but Messrs. Broome and Currey have lately found a pretty Ascobolus on this substance when exposed to decay.

[^10]
CHAPTER IV.

GEOGRAPHICAL DISTRIBUIION OF FUNGI.

The reproductive bodics of Fungi arc so small and casily wafted by the air,* and, morcover, are in certain cases capable of cnduring such high and low temperatures without losing their power of germination, that there are far greater facilitics for their distribution than for that of phenogams. Wherever, thercfore, similar conditions of soil, moisturc, and other cxternal accidents cxist, or, at least, such conditions as are suited to the development of particular species, we are prepared to meet with the same or similar Fungi. Accordingly, if we take almost any extratropical island or district, we find a large portion of species identical with those of Europe, besides a ccrtain number of closely-allicd species; and in proportion as such places present at times conditions approximating those of tropical or sultropical countrics, we have a varying proportion of truly tropical or subtropical specics. If, for instance, we take Tasmania, of which only a portion of the Fungi are at present known, we find, out of 275 species,

[^11]113 British, 20 European species which may be expeeted to oceur in this eountry, 95 Tasmanian species of European type, 19 subtropieal, with 28 of extra-European type-Chilian, Antaretie, and Tasmanian. If New Zealand be the point of comparison, we have in 158 speeies 48 British species, 6 European, 3 cosmopolites, 19 tropical and subtropical, with a few from various localities, 42 new species of European forms, 5 Australian forms and 28 subtropieal, or, in other words, 58 tropical and subtropieal types, including all that are not European, and 100 European. The proportion of European types is, therefore, much larger in Tasmania than New Zealand, though we have still a large proportion in the latter loeality. Even in tropieal countries-that is, tropical not only as to latitude but as to elimate, for with high elevations we may have alpine scasons-we always find a certain though variable proportion of European species. In Cuba, for instance, there is a fourth, in Java a third, while in the Philippine Islands there is ouly a twenticth of sueh speeies. Amongst these are a few specics found in every part of the globe.

The seope of this work does not admit of any eloser conputation, though materials are not wanting for fuller comparisons than have yet been made. Still mueh yet remains to be done amongst tropical Fungi. Those of the greater part of India, for instance, exeept as regards the Himalayas, are almost unknown. It must be remembered, however, that altitude has more to do with the presence of partieular speeies than latitude. As regards the Sikkim Himalayas, for example, we have in the hissing hot valleys towards their base, truly tropieal species; ligher up are subtropical species of Ceylon and Java; then those of southern Europe; while as you ascend, multitudes of speeies cither identieal with or elosely allied to northern European speeies make their ap-
pearance, and do not ceasc till we reach an altitude of 18,000 fect.

In respect of genera, they are in general diffused almost indiscriminatcly over the surface of the globe. A few genera only are peculiar to warm climates, and some of these have their representatives on cither side of the basin of the Mediterranean. The same species occur sometimes at great distances from each other, being confined to small districts in cach locality. Java, the Sikkim Himalayas, New Zealand, and South Carolina, produce a eurious plant,* allied to Geaster, which occurs on decayed laurcls, without any intcrmediate stations, and other instances might be brought forward. The species which oceur in different tropical countrics often differ widely, especially the Polypori, but it is certain that there are hundreds of undeseribed specics to reward future researches, and till the genus has been more closely studied, it is difficult as yet to come to any accurate eonclusions.

As regards cosmopolite species, it is curions that the common Mushroom is one of the most universally diffused, but it may be doubted whether this has not accompanicd the introduction of the horse, consequent on the dispersion of the human race.

But little has at present been made public respecting the distribution of specics in Europe. Frics is, however, collecting materials for the solution of this difficult question. The great evil is, that so few persons have made such a critical study of the more important species which retain their charaeters but imperfeetly when dried, that it is not always possible to give implicit credit to lists of species which may be published in loeal Floras. Indeed, some notion of the difficulty may be found from the frequent alterations of sy-
nonyms which appear in the works even of the best Fungologists. Mueh remains also to be done in the south of Europe, notwithstanding the labours of sueh trustworthy authorities as Vittadini, and till the Southern Fungi are worked out in the same spirit and with the same aceuraey with whieh he has attacked a portion of the Fungi of Italy, it will be impossible to aseertain eorrectly the limits of speeies.

It is requisite, however, not only to study their limits in latitude, but the geological limits also. These will probably prove far more striking. The predominanee of Truffles in limestone formations above other strata is a well-known fact, and there is little doubt that a eomparison of lists belonging to different formations would give equally striking results in other groups. The subjeet is well wortlı attention, and will be found highly interesting to those who have faeilities of visiting different distriets for eomparison. It must be remembered, in considering this subjeet, that species cannot beeome permanent inhabitants of any distriet if extremes exist destruetive to their spawn. Execssive drought, or moisture, extreme heat or cold at ecrtain times of the year, may prevent the establishment of a speeies, espeeially where that species is a long time before it sends up perfeet fruit from its spawn. It is probable that few ever make their appearance which are not able to exist permanently. The Vine Mildew and Potato Mould are at present examples in favour of this notion, but it is to be hoped that, under some peeuliar coneurrenec of cireumstanees fatal to their growth, they also may at length entirely disappear.

But little ean be said of the oceurrence of Fungi in earlier periods of the carth, before the introduetion of man into the universe. No eertain traees of Fungi are to be met with till very recent periods, though a few anomatons productions have
been referred to that tribe from mere external resemblance. We know at least that the genus Penicillium was contemporaneous with the pines which yielded amber, and one or two more genera undoubtedly existed at the same time. It is probable, too, that some of the blaek speeks which oceur on leaves in very reeent deposits are due to Sphæriaceous Fungi, but I know nothing of them except from the published figures. Polyporus lucidus (Plate 16, fig. 2) oceurs in a fossil state in the Fens of Cambridgeshire. A specimen in the Kew Museum is singularly like onc from the Sikkim Himalaya plaeed by its side.

CHAPTER V.

GROWTH OF FUNGI.

Fungi consist of two principal parts, the vegetative and the fructifying. If we take for instance a common Mushroom, the vegetative is represented by the spawn, which for a time carries on all the existing functions of the plant; the fructifying by the stem with its cap and gills, which bears nearly the same relation to the spawn, as the flower with its various organs to the stem on which it grows. The spawn may flourish for ycars without ever bearing any fruit, but fruit can never be produced without spawn. This fact is gencrally overlooked, because the fruit bears usually so very large a proportion to the spawn; but the proportion is not greater than in many parasitic plants-as, for instance, in the Rufflesia, which grows on the roots of Cissus, with but a very slight apparatus between the flowers and the matrix ; ánd the same may be said of Balanophore, of which one is represented in Plate 2, fig. 8.

The spawn of Fungi, whether in a cellular or filamentous condition,-for it undergoes an infinite variety of modifica-tions,-is developed in various situations, and even when present beyond a doubt amongst the tissues of plants at whose expense it lives, is very difficult to deteet, in consequence of
the ease with whieh it may be confounded with the divided walls of the eells and little fragments whieh projeet from them when a seetion is made for the mieroseope. At times, however, all diffieulty eeases, and in potatoes affeeted with the Mould whieh bears so great a part in the produetion of the Potato murrain I have seen instanees in whieh the tissues were almost entirely replaeed by the sparn of the Fungus.

One peculiarity about the growth of Fungi is the tendeney whieh they have to assume a eireular disposition, and that not merely in eases where the spawn is perennial, but where the whole existence of the Fungus is confined to a few days or weeks. A mass of spawn, however, it must be observed, does not arise in general from a single spore, but from a colleetion of spores, whiel spread in every direetion and form a common felt from whenee the fruit rises. I will not enter upon the question whether it is possible that several spores, after making a common felt, may enter into the composition of the same fruit. This is indeed asserted by Ehrenberg, but the point is one of extreme delieaey, and requires mueh coufirmation before it can be received as an established fact. Nevertheless, as the mass grows from a common eentre, it is conceivable enough that at a conmon distanee from that centre the spawn should be in a fit eondition to produce fruit, and that as it eontinues to spread, the same process should take place again ; and that, in this way, a eoneentrie arrangement of the fruit should take place, as is the ease in some Liehens; as, for example, in that formerly known under the name of Lichen concentricus.* This disposition is espeeially evident in some of the parasites whieh affeet fruit, and in none more so than in Oidium fructigenum, a Mould which is extremely
eommon in autumn on pears, apples, and other fruit, and frequently while yet langing on the tree.

In the fields we see this tendency illustrated by the formation of fairy rings, which have for a long time puzzled philosophers, and are not withont their difficulties now. These rings are sometimes of very aneient date, and attain enormous dimensions, so as to be distinetly visible on a hillside from a considerable distance. It is believed that they originate from a single Fungus, whose growth renders the soil immediately beneath unfit for its reproduetion. The spawn, however, spreads all round, and in the seeond year produees a erop, whose spawn spreads again, the soil behind forbidding its return in that direction. Thus the eirele is continually inereased, and extends indefinitely till some cause intervenes to destroy it. If the spawn did not spread on all sides at first, an are of a cirele only is produced. The manure arising from the dead Fungi of the former years makes the grass peeuliarly vigorous around, so as to reuder the eirele visible even when there is no external appearance of the Fungus, and the eontrast is often the stronger from that behind being killed by the old spawn. This mode of growth is far more eommon than is supposed, and may be observed constantly in our woods, where the spawn ean spread only in the soil or amongst the leaves and decaying fragments which cover it.

The rapidity with which spawn penctrates, and the depth to whieh it enters, is often quite surprising. The most solid timber, in a few months, when exposed to the weather and in a damp situation favourable to the development of Fungi, will sometimes show unequivoeal traees of spawn. I have seen, for instance, elm trunks whieh were perfeetly sonnd when felled, penctrated by the end of the seeond year with spawn to within a few inehes of the centre; and in this ease
it must be remembered that vegetation goes on in the trunk for nearly a twelvemonth before any Fungi ean establish themselves. The growth of Dry-rot is unfortunately familiar to all, and instances oceur in which its spawn not only enters the wood, but penetrates solid struetures of briek.

When spawn has onee taken possession of a spot favourable to its growth, it is astonishing what an immeuse resistance it will sometimes overcome. Large flagstones, for instance, are sometimes raised by Mushrooms, and even tender species like the Coprini (Plate 12, fig. 1) will sometimes resist a collsiderable pressure.

Where the spawn of Fungi has ligh powers of vegetation, but no possibility of getting aceess to the external air, it assumes peeuliar forms which are sometimes extremely puzzling. In the middle of a solid trunk, for instanee, it forms black plates, as in the ease of the common sealy Sapball, Polyporus squa mosus, and several of the more solid Splueriacei,-while, when running between the bark and wood, it assumes the form of a flat, anastomosing, blaek seaweed, rather than of a Fungus, in whieh eases it is known under the name of Rhizomorpha subcorticalis, ete. This form is assumed by the spawn of various Polypori and Xylaric, and in some cases the condition to a eertain extent seems to be almost normal. The absence of light, too, impedes the proper development of Fungi, and hence a variety of forms oceur, very few of whiel perfeet their fruit. I have even found a Coprinus, which grew down from the interior of the roof of a hovel, though perfect in other respeets, absolutely devoid of fruit.

Spawn, as said above, may exist for years without produeing fruit, and it is probable that this is equally the ease whether it runs through soil or deeaying substances, or amongst living tissues, whether without or within their walls.

Wheat Mildew, for instance, often arrives at a certain stage of growth without perfecting its fruit, a fact whieh sufficiently aecounts for the apparently sudden appearance which it makes in seasous favourable to its full development amongst our erops.

As regards the growth of individual Fungi, it takes place essentially in a direetion from the eentre to the eireumference, or, in other words, it is eentrifugal. Henec a Polyporus, such as P. fraxineus, involves every stiek and blade of grass in its way as it inereases in diameter. The mode of growth is aclmirably illustrated by a seetion of Polyporus hispidus, so eommon on apple-trees, in which the threads of which it is eomposed are seen to radiate in one direction towards the pileus, where their free ends form the hispid faseicles on the surfaee, and in another direction towards the hymenium, where they form the walls of the tubes and sporophores. It is not indeed intimated that no growth takes place in any other direction, but that the main direction is eentrifugal.

Fungi are in general of short duration, but some go on inereasing for years. Polyporus fraxineus, though only a few inches across, the first year, attains at length a breadth of as many fect. Some of the stipitate Polypori seareely attain their full charaeters till the seeond year, and a few cven of the softer speeies, if they get through the winter, sprout again from the portion of tissue which remains sound. In such ease, though at first the nutriment was derived from the matrix, by means of the spawn whieh performs the funetions of roots, life is earried on by the absorption of surrounding moisture, and perhaps partly at the expense of the dead Fungi. Even some Agaries, as A. fusipes (Plate 5, fig. 5), seem sometimes to sprout from the decayed stumps of the previous year, without any fresh mycelium.

CHAP'TER V1.

STRUCTURE OF FUNGI.

Fungi, with very few execptions, consist entircly of cells. In about three gencra alone is there anything at all rescmbling the true vessels of flowering plants. Thesc cells appear under a varicty of forms, from that of regular globules, to thin cylindrieal thrcads. In some cascs, as in certain species of Botrytis* (Plate 1, fig. 7), the wholc plant consists of a single branched cell, without any dissepiments, cxactly as in some of the scumlike green plants which float upon our stagnant pools. \dagger These cells generally contain a grauular mass, but in many Fungi the contents of certain privileged sacs are transformed into bodies of various forms, capable of recproducing the species, callcd Sporidia (Plate 1, fig. $2 b$), while in others distinet eells are formed at the tips of certain

[^12]threads or of their ramifieations, when they are ealled Spores (Plate 1, fig. $1 a$). Henee when Fungi are redueed to the very simplest forms under which they ean appear, we have on the one hand the genus Gymnosporium (Platc 1, fig. 8), which consists of an almost rudimentary base or spawn, for no Fungus can grow without* some cells or threads, however obseure, from whieh the fruit may spring. On the other hand, we have the genus Ascomyces (Plate 1, fig. 9), eonsisting in like manner of asei filled with sporidia.

In these eases the reproduetive organs predominate to the almost total exelusion of the vegetative. In almost every ease, however, the parts which bear those organs are the most conspicuous, and often the only ones which attraet general notice. The pileus of an Agaric, for instanee, with its stem and gills, or, speaking eollectively, the fruit, is far more prominent than the spawn or myeelium. The largest Agarie, however, admits of elose eomparison with the simplest Mould. Let us take as an example Botrytis (Plate 1, fig. 7). We have threc evident parts: the horizontal threads whieh ereep amongst the loose tissue of the under side of the leaves, which answers to the spawn of the Mushroom ; the ereet threads which spring from it, bursting through the stomates, which are represented in the Mushroom by the threads or eellular tissue of whieh the stem of the Mushroom is eomposed, and whieh, branching in every direetion, pass into the eap, and from thence into the gills, \dagger where their free extremities

[^13]bear fruit almost exactly in the same way, as may be seen by comparing the spore-bearing eells of an Agarie (Plate 1, fig. 1) with those of Botrytis curta (Plate 1, fig. 7 b). The lower part of the thread of the Mould answers to the sporophore (Plate l, fig. $1 c$), the short branchlets to the spieules, (Fig. l b), and the spores to those organs in the Agarie (Fig. $1 a$).

I have ehosen as an objeet of eomparison with the Mould a genus whieh las reaehed almost the highest development of whieh a Fungus is eapable ; but the same reasoning applies to every other ease amongst the spore-bearing Fungi.

The justiee of the notion that the highest Fungi may be eonsidered as eonsisting, theoretieally, of a mass of eloselyeompaeted Mould, is proved by the great diffieulty whieh there is in distinguishing the highest Hyphomycetes from the lower Clavati. The only differenee is, that in the latter the sporophores are more deeidedly distinguishable from the tissue that bears them than in the former. In the one ease the spores are seated on distinet organs, in the other on the mere tips of the component threads, and even this distinetion is not always available. It is, moreover, curious that, under eertain eircumstanees, the eommon Penicillium glaucum, instead of forming, as it usually does, a continuous stratum, breaks up into little tufts, and in some eases the threads eomposing these tufts are so ineorporated as to form a sort of eommon stem, witl a globose head of spores, and the condition whieh thus results has been formed into the genus Coremium, or where a still greater eoneentration has taken plaee, it has been deseribed as a Stillum, one of the highest forms whieh Moulds are capable of assuming.

The hard, carbonaeeous tissue of whieh the perithecia of most Spheeriucei and of the cognate forms amongst the Comiomycetes, -if indeed there are any of these which are not mere eondi-
tions of speeies in the former group-is formed, seems at first sight totally different from that of other Fungi. But the gradations are very gentle, and every intermediate condition may be found. In these as mueh as in the Fungi of the primary group, there is a distinetion of spawn and fruit, though the difference is in this ease even more highly exaggerated, espeeially in those instanees where a distinet rceeptaele oceurs, in whieh the peritheeia are lodged, as in Xylaria (Plate 24, fig. 1, 2), and Cordiceps (Plate 23, fig. 4, 5, 6, 7).

Beside the general tissue of which Fungi are composed, in a few species, as the Lactarii (Plate 13, fig. 2, 3, 4), or milky Agaries, there are distinet vessels like the vessels of the latex in phænogams, whieh contain a milky fluid. They exist in all parts of the plant, espeeially in the gills, where they part with their eontents on the slightest touel. This fluid is of various eolours, mild or extremely aerid, and often ehanges colour when exposed to the air. When dry it forms an unetuous mass, which burns with a brilliant flame. In some Russulee (Plate 13, fig. $5,6,7,8$), though probably not in the speeies represented in the Plate, these vessels exist, but eontain a watery fluid only.

In many Fungi, something at first sight quite distinet from the eellular tissue seems to exist, in the shape of a viscid fluid which elothes the surfaee, or which oeeupies in a more or less condensed form portions of the plant. In every ease, however, in which I have examined this under the mieroseope, the slime appears to be formed of extremely dclieate gelatinous threads, while the firmer gelatine is formed either of similar threads or of threads with extremely thiek external walls and a very slender eavity.

The soft pulpy mass of whiel the Myrogastres are eomposerl, destitute as it is of eclls, and hardening into threads and peridia equally destitute apparently of organie structure,
is one of the most remarkable phenomena amongst Fungi, and without example amongst other plants. It sometimes, however, proeeeds from a mycelium, and in the end always gives rise to fruit-eells, and sometimes to spiral tissue, and is therefore by itself no suffieient reason for exeluding these productions from the rank of vegetables.

The colour of Fungi depends in most eases upon the contents of the eells, exeept in those instances where the walls of the eells themselves are earbonized. These coutents arc of almost every eolour except a pure grcen. When green oceurs in Fungi, as in Peziza aruginosa, Agaricus eruginosus, ete., it is generally of a metallie hue, or dull and inelined to olive, as in the green Russule.

I notiee, in eonelusion, under this head, one or two properties oceasionally exhibited by Fungi. The most notable of these is the luminosity of some species. Agaricus olearius, for instanee, which grows on olive-trees in the south of Franee, is so luminous that it is possible to distinguish letters by its light, and still more luminous speeies have been found in Brazil, Australia, and Amboyna. We are not, however, without luminous Fungi in this country, but the phenomenon is rare, and has been observed prineipally in imperfectly developed speeies. Decayed wood and leaves also are sometimes luminous, but whether from the presence of fungous matter or not, is not quite eertain.

I am not aware that in these eases there is any aecession of heat, but Dutrochet has observed that more heat is generated by Boletus coneus oceasionally than by any other vegetable.

It has been asserted that powerful odours are destruetive to Fungi, and espeeially that of Russian leather; but I do not find this confirmed by my own cxperienee, at any rate as far as regards the instanee alleged.

CHAPTER VII.

PROPAGATION OF FUNGI.

Fungi are propagated by eells, whieh either separate by means of a constriction from privilcged portions of their tissue (spores) (Plate 1, fig. 1), or are produeed freely (sporidia) within eertain saes ealled asei (Plate 1, fig. 2) or sporangia. In a few exceptional eases, though attached to the tips of the fruit-bearing threads, they are surrounded by a eommon membrane (Plate 1, fig. 3, 6). Whether the reproduetive bodies, however, be ealled spores or sporidia, they have a singular tendency to appear in definite numbers, either in twos, fours, or multiples of four. Amongst the lower sporiferous Fungi there is seldom any attempt at arrangemont; but in the higher, the sporophores almost uniformly have four spieulcs, and cach of thesc is surmounted by a single spore. Very rarcly there are but two, and still more rarely, as in Phallus, the number exeeeds four. Amongst the sporidiiferous Fungi, the most common number of sporidia in each asens is eight; where they are very large, this is sometimes reduced to four, and, on the contrary, sometimes inereased to sixteen, thirty-two, ete. In some eases the number is indefinite, and, as far as I know, amongst the Vesiculiferi always so. The same law does not hold good when
the sporidia themselves are divided, though the first septum is generally found in the centre, and the two halves are often divided in like manner. Multitudes of exceptions however occur, though the normal plan is probably symmetrical.

Sometimes both forms of fructifieation take place or coexist in the same plant, and then the free cells are ealled eonidia or stylospores: conidia when the threads which bear them are exposed; stylospores when they are produced within the same or distinet perithecia (pycnidia), or when they aecompany the asci, being elosely paeked with them in the hymenium. Sometimes conidia, stylospores, and sporidia may be produced in the same plant, and even where the normal fruit consists of spores without sporidia, there may oceasionally be conidia.

Spores, though apparently globose or ellipsoid under the mieroscope, are often very thin and hollowed out on one side like the seeds of a Veronica, and amongst the Spheriacei there are sporidia which have the same peculiarity.

Sporidia are in general more eomplieated than spores, but whether the cell is simple or variously divided horizontally and vertieally by partitions or septa, the structure is still the same. They consist of two or more membranes containing a granular mass, in the midst of which there are frequently one or more oil-globules or distinet eytoblasts. Germination takes place cither by the protrusion of a part of the two walls together, or by that of the inner wall, whieh perforates or ruptures the outer, if a pore be not previously in existence. Where the spores or sporidia are compound, each joint will sometimes germinate at the same time, but oceasionally they break up into separate parts, and in these eases it is sometimes convenient to consider each part as a distinet reproduetive organ.

Besides these propagative bodies, other extremely minute bodies are produeed either on threads or in distinet peritheeia or cells in eertain Fungi, as Bulgaria inquinans, Hysterium Rubi, etc., whieh from analogy are supposed to have something to do with the impregnation of the normal fruit. In this ease the organs whieh contained them are ealled antheridia, or spermogonia, and the bodies themselves spermatozoids. It is very doubtful at present whether the eells whieh project from the gills in Agaricus, Coprinus, Boletus, ete., are of the same nature, but it must be remembered that in many eryptogams the mode of impregnation far more elosely resembles that in animals than that in phrnogams, and therefore it does not follow that a more perfeet type may not exist amongst the lower than amongst the higher Fungi. Sometimes amongst the aseigerous Fungi, as in Nectria inaurata, there are asei containing, the one eight sporidia, the other a multitude of minute granules. These seeondary asei may perhaps with as much justice be eonsidered antheridia as the bodies mentioned above. It is observable, however, that in the other eases the spermatozoids are always produced at the tips of delieate threads or their branehlets, while these little bodies are produced freely in the saes like sporidia. It is to the Messieurs Tulasne that we are ehiefly indebted for this knowledge, as also for the eurious faets whieh I am about to mention.

In many of the parasitie Fungi, belonging to the same seetion as the Wheat Mildew and Bunt, a very eurious proeess takes place. The reproduetive organs, which from analogy are commonly ealled spores, do not direetly propagate the plant. These bodies however germinate, and often at definite points, exaetly after the fashion of pollen-grains, and after a time prodluee on their threads secondary and sometimes ter-
tiary spores eapable of germinating. It is by these that the plant is really reprodueed.

In the Bunt the proeess is easily observed. If a portion of the spores be laid on a pieee of damp flamnel or on a slip of glass, and properly seeured from evaporation, a white floceose matter is soon seen upon them, and when examined by the mieroseope it is found that the spore first gives out an obtuse thread, whiel produees at the apex a coronet of eurved delieate appendages like the spores of a Fusisporium, to whieh genus they were referred before their true eharaeter was aseertained;* these soon beeome eonneeted by lateral threads, and ultimately produee little oblong somewhat oblique eells, which germinate and reproduce the plant (Plate 1, fig. 5). The analogy between this and the development of pollengrains on the one hand, and the formation of the protlallus in the higher eryptogams, is very eurious. \dagger

This mode of propagation is not unimportant as regards these parasites. It was quite elear that their spores could not enter by the stomates of the stem or leaves, or much less by the tender tissue of the spongelets of the roots. Nor, to take the ease of Bunt as an illustration, was it more possible for the large blunt germinating threads of the first order thus to enter. By this mode of propagation, however, a far more delieate spawn is produeed, and where the spores are not for a long time adherent to the mother plant, but are entirely blown away at an early period, as in the Smut, we have the spawn in the field ready to attaek the seed the moment it is committed to the ground.

Besides these modes of propagation, Fungi arc extensively propagated by fragments of the spawn, as for instance the

[^14]yeast Fungus, which may be reprodueed for eenturies without ever throwing up the true fructifying threads, exaetly as among Mosses, a speeies may exist age after age, though never bearing fruit.

In some instances undoubtedly when a plant is onee thoroughly traversed by the spawn, even though it dies or is eut down by eold every year, a Fungus may be propagated for a certain time by that portion which remains in the perennial root. Plants for instance of Achillea Ptarmica, whieh I brought from Lille strongly infested with Labrella Ptarmice, yielded for a year or two seanty erops of the Fungus, till it eeased to appear altogether, and the same eireumstance took place in my garden with Viola odorata, which was distorted with Polycystis Viole. Similar instances have been observed at Paris. It is eurious that so few of these parasites appear in our stoves. Graphiola Phœenicis, on one or two kinds of Palm, is almost the only one which has been observed, but whether imported or not it is difficult to say.

If those Moulds which infest fish or aquatie vegetables, as Leptomitus, Saprolegnia, ete., when immersed in water, be truly Fungi, we should have a more perfect type of impregnation than is presented by the supposed antheridia-at least one more nearly resembling that in animals; but we are not at liberty to assume their affinity to Fungi, and for the present they must be left amongst the Algre, to whieh they approximate elosely as regards their reproduetive organs. For a history of these I must again refer to the ' Introduetion to Cryptogamie Botany.'

CHAPTER VIII.

VARIATIONS OF FUNGI.
Real hybrids do not probably exist amongst Fungi, and if this be true, one souree of perplexity will be removed whieh renders the task of diserimination of species diffieult to the phænogamie botanist. In organisms which depend so mueh upon outward cireumstanees, considcrable differenees will indeed oceur, but most of these, after a little study and experience, are easily estimated.

The same species will for instance present variations in size and colour, in the condition of the outer surface, in the form of the stem and pileus, in the breadth and attachment of the gills; and yet, amidst all, certain general features will be preserved which preelude mueh diffieulty, though they make it extremely hard to draw up sueh eharaeters as shall be generally applieable. Notwithstanding all the experience whieh the great Swedish Fungologist has had in the study of the fleshy Fungi, and elever as his characters confessedly are, and satisfactory taken as a whole, individual speeimens constantly oceur, from loeal modifieations, whieh eannot be comprised within their limits. Nay, even generic and seetional charaeters are sometimes at fault. It is, for instance, frequently a matter of diffieulty to distinguish an Agarie of the subgenus

Tricholoma from one of the subgenns Clilocybe, becausc, though one is distinguished by having the gills emarginate or sinuated bchind beforc their attachment to the stem takes place, and the other has the gills acutcly adnate without any cmargination, modifications occur on either side; while in Clitocybe, in an early stage, there may be a decided emargination, in Tricholoma, from the depression of the pileus, the gills may beeome decurrent. And yet these characters are founded in naturc, and are satisfactory enough when the variations to which they are subject are properly appreciated. Still more, changes of outward form may occasionally take plaec, inconsistent with the eharacter of the specics. Thus we may have umbonate individuals where the pileus ought simply to be obtuse, while a stemless Agaric may exlibit a stem or the contrary. The fact, however, is, that as in phænogamic botany the sum of characters must be looked to, while it is remembered that no definitions in natural history can be strictly mathematical. Where speeies are very difficult to distinguish, it is in gencral because forms are separated whieh are too closcly allied, an cvil which is familiar enough to every praetieal botanist, though apt to be overlooked or eomplctely ignored by the inexperienced or mere loealists. The cssential characters are often the least superficial, and hence the young botanist is apt to makc mistakes, from confounding merc analogics with affinities. Some Agarics of the subgenus Pratella, for instance, would never be separated from others of the subgenus Lepiota, without examining the nature of the spores. Thesc organs, morcover, sometimes differ in closely allied speeies of such similar external characters, that it would be impossible to distinguish them without having recourse to the microseope.

If there is diffieulty about speeies, there is often far more about gencra. The eharacters in so natural a group are
necessarily founded on slight variations of structure, and the same species in different stages of growth might sometimes be referred with equal propricty to three or four gencra. The transitions, for instance, from gills to folds, from sinuses arising from the union and ramification of gills to regular tubes or pores; and again, when these are broken up, from mere walls of pores, to tceth, warts, granules, etc., are almost infinite. Undoubted Agarics, for instance, may be found where the veius which conncet the gills are so abmond and prominent that it is scarcely possible for the tyro to belicre that he has an Agaric before him, looking merely to the definition of the genus. Indecd, there is an abnormal condition of the gills of many Agarics, where an hymenium is produced on the top of the pilcus as woll as bencath, in which the character of gills is quite lost. Such conditions have been found in A. rubescens, A. odorus, A. cerussatus, A. campestris, A. laccatus, and some others, and very puzzling they are to begimers.

Amongst the naked-seeded or sporiferous Fungi, the fruit varics but little ; but in the sporidiiferous specics the modifications of the sporidia in sizc, form, number of scpta, etc., is often very great ; insomuch that there is a disposition amongst many fungologists to undervalue microscopic characters. They are, however, of very great value, if the changes which they arc liable to undergo in passing from infancy to full growth are properly borme in mind: indeed, without them it is utterly impossible to distinguish many species. It is not, however, within my scope to advert more particularly to this subject here.

There is one more variation of which Fungi are capable, of which it is necessary to add a few words. The hymenium, in the greater part of the vast group of Hymenomyceles, is cssentially turned away from the light, and we have just scen in
those instances in which it is accidentally formed on the upper surfaec, how much it is modified. There are, however, many of the lower speeics in which it is superior, in which casc the hymenium is said to be resupinate. This charaeter is not however constant, for when the substance on which the Fungus grows is placed in peculiar conditions, the cdge of the patch will become detached, and will follow the common law of turning its hymenium away from the light, and thus from a resupinate will have become a reflected, or even a dimidiate Fungus. The contrary process sometimes takes place, by which dimidiate species become resupinate, insomuch that a vast quantity of resupinate Polypori arc referable, when properly understood, to higher species. Even some Agarics are resupinatc, but these occasionally turn away their hymenium from the light, or on the eontrary the pilcus which was at first shortly stipitate becomes gradually excentrie and turns over, exposing the hymenium. The tendency amongst the higher Hymenomycetes is so strong to produce the hymenium on the lower side, that in some cases, especially in the genus Polyporus, if the plant be accidentally reversed, the hymenium is gradually obliterated, and a new hymenium formed on the other surface. In consequence, wherc Polypori are in very vigorous growth, it is often difficult to preserve them in a natural state. A little change of situation eompletely obliterates the orifices of the pores, and if an hymenium be formed above, the whole characters of the plant are altered.

Not only do many Fungi remain long in the state of spawn without forming fruit, but they give risc occasionally to productions quite at variance with the characters of the perfect plant. Hence a number of spurious genera and species originate which are justly struck out of every scientific Flora. The genus Rhizomorpha, for instance (as mentioned above, p. 42), where it is really fungoid, consists, except in a solitary
instance, of the spawn of different Polypori and Sphcerice, altered by growing beneath the bark, free from the influence of light, in such a way as to form rootlike often anastomosing bodics, with a dark scparable euticle. Sclerotium, on the contrary, is formed by the concentration of threads into solid wartlike bodies or nuggets, entirely devoid of fruit, but which on oceasion give rise to various kinds of Fungi, as Agarics, Pistillarice, Peziza, etc. In one instance I was enabled, in eompany with Mr. Hoffmann, to watch the progress of a thin sliee of the Sclerotium, which is so common in mildewed onious, when placed in a drop of fluid in an air-tight cell, to the development from its tissues of a perfect Mucor. In some cases, the spawn merely collects earthy particles about it till it forms a large solid mass, which, when placed in proper eonditions, produces fruit, as Polyporus tuberaster, a specics commonly eaten in Italy. It is obvious that such productions cannot be admitted into a system,* cxeept so long as their nature is unknown. It is however feared that some of the Fungi which figure under different genera amongst Coniomycetes and Hyphomycetes, are in scareely a better condition, though they liave this difference, that they do produce a sort of fruit. Oceasionally, under deficiency of light, Fungi possess a stem only, without any pileus, or only a rery imperfeet one; and sometimes, where perfect pilci are produced in one part, mere stems are formed in another, as if there were not vigour enough for every demand. This latter is the ease to some extent with Marasmius Rotula (Plate 14, fig. 7), but it is far more eonspicuous in some foreign species, as also

[^15]in some exotie Polypori. As regards the former ease, Lentinus lepideus and Polyporus squamosus sometimes produce little more than stems, and in the latter the stem beeomes so branehed as to resemble a stag's-horn. Agaricus ostreatus also, when grown in a vault, assumes sometimes a most beautiful appearance, like that of a eauliflower, without any definite pilei. Sometimes even in the open air the stem swells above and forms a sort of elub, without any pileus. This is the ease in Agaricus popinalis and the North Ameriean A. abortivus. In some eases, again, the pileus, though developed, is never perfeeted, as in a eurious form of Lentinus tigrinus not uneommon in the United States, where the whole forms a firm mass, suggesting, with its intrieate abortive gills, some new genus, rather than that to which it really belongs.

I may mention here that a strange transformation takes place in a portion of the fruit of Agaricus racemosus. The stem bears little pilei on its sides, as well as one whieh is terminal. This latter has gills like a eommon Agarie, but the lateral pilei are spurious, and lave the structure of a Stilbum. A somewhat analogous eireumstance takes plaee in some speeies of Ascophora, where the lower vesieles contain very different sporidia from that whieh is terminal, though in other respeets the differenee is not so striking as in the Agarie just mentioned. Speeies of Nyctalis, wheu attaeked by Asterophora, beeome nearly abortive, though there is still some traee of gills.

The spores of Λ garies, though apparently perfeet, are sometimes defieient as to their internal strueture, and therefore abortive ; and I have observed the sporidia in Spheria to beeome diseased from the conversion of their contents into a dark solid mass.

CHAP'IER IX.

USES OF FUNGI.

Fungi perform an important office in the economy of Nature, though they do not tend, like other plants, to kecp up the balance between the animal and regetable world as regards the supply of oxygen, whieh they tend to diminish rather than to replaee. They, however, not only afford a supply of nutriment to hundreds of living beings, but by their fermentative and putrefaetive powers, as well as their living so often at the expense of the hardest vegetable struetures, whieh they tend to dceomposc, they prepare a rich supply of vegetable mould for future generations, besides destroying those structures whieh have already performed their funetions, and are mercly eumbering the surfaee of the earth.

As Fungi are in general highly nitrogenous vegetables, it is probable, à priori, if they contain no poisonous or injurious element, and are not disagreeable in taste, that they will form an acceptable and nutritious article of food. Expericnee slows this to be the ease; for not ouly do savage tribes like the Fucgians adopt certain speeies as their staple food during many months, but in a considerable part of Europe Fungi are largely eonsumed when fresl, and preserved in easks for winter use. It should seem that, for this latter purpose, such
species as are firm and easily prescrved are eolleeted almost indiseriminately, the vinegar in which they are kept in all probability neutralizing the poisonous alkali whieh all of them eontain in a greater or less proportion. The use, however, of fresh Fungi is not always unattended with danger. Some speeies seem to be uniformly poisonous, while others,-and amongst these even the eommon Mushroom, -though usually safe, oecasionally lead to misehief. This, in all probability, depends upon the varying quantity of poisonous alkali whieh enters into their composition. Incredible as it may seem to us, who never seruple to eat the true Mushroom, that speeies is most earefully cxcluded from Italian markets; while, on the eontrary, with the execption of the Truffle and Morel, it is almost the only one whieh is allowed to be exposed for sale in Paris.

In countries where the consumption of Fungi is large, aeeidents eonstantly happen, notwithstanding the pains whieh are taken to cxclude doubtful speeies from the markets, in eonsequence of mistakes as to speeies, though it is probable that the peasantry are far better aequainted with their distinetions than ourselves. In our own eountry, the prejudice against the use of anything except the eommon Mushroom is very strong. We are, however, surrounded by a great deal of wholesome and pleasant food, of which we cannot avail ourselves from mere ignorance. The eommon fairy-ring Champignon (Platc 14, fig. 5), for example, is the very best of all our Fungi, and yet there is searecly one person in a thousand who dare venture to use it. With eommon observation, no mistake need be made, though another species of Marasmius, M. urens (Plate 14, fig. 3), possessing highly aerid qualities, sometimes accompanies it, and might pass muster, if attention be not paid to the narrower gills and their darker colour.

It is not, however, my intention to enter at length upon the eseulent properties of Fungi. To do so, would require more spaee than I can command, and the work is done so well in Dr. Badham's treatise on the subjeet,* and Mrs. Husscy's 'Illustrations of British Mycology,' that there is no nccessity for saying more upon the subject herc. \dagger In the latter especially will be found some excellent reccipts and a vast variety of information, the result of aetual experiment. I am not, indecd, such an enthusiast on this point as my lamented friends, but I am quite ready to subseribe to their views as to the advantage which might be derived from the use of many species. The accidents which arise in this country are very few, and generally duc to the grossest ignorance. It should, however, be obscrved, that it is not always the poisonous propertics of species that are to be questioned. A man after a long day's fast, for instance, eats a pound or two of Mushrooms badly cooked, and fiequently without a proper quantity of bread to sccure their mastication, and is then surprised that he has a frightful fit of indigestion. There are, again, pcculiarities of constitution, which will not admit certain kinds of food, cven of the nost harmless description. Some sorts of animal food-as pork, shell-fish, etc.-are absolute poison to individuals; and I have a friend who cannot eat the smallest portion of an egg, however prepared, without serious inconvenienee.

I belicve a great deal frequently depends upon the quantity of bread which is eaten with them. In countries where coarse bread is largely consumed, raw vegetable diet, such as would

[^16]induee dysentery here, is taken with impunity. Willdenow informs us that for some weeks he lived on Fungi and coarse bread, and enjoyed during the time the most exeellent health. It is, however, certain that if the speeies were eonsumed indiseriminately, without the use of neutralizing eondiments, there would be many fatal aceidents. Even with eare and knowledge, disasters may oceur. Dr. Badliam once suffcred violently from simply tasting some of the spores of one of the milky Agaries whiel he had eolleeted; and a fatal aeeident was nearly happening to one of his friends from eating aeeidentally a small pieee of some Fly A garics which had been sent by him with a view of making a decoction to poison flies. The schoolmaster in his parish was extremely ill on onc occasion from mistaking the tarragon-secnted Agaricus Euosmus for A. ostreatus, a speeies, it may be observed, seareely worthy of being the subject of experiment.

Few speeies, however, have sueh virulent properties, and in general the taste or texture of dangerous speeies is sueh as render them unaceeptable. The safest plan, where persons venture on experiments, is never to try any whieh have a disagreeable or forbidding smell, while those with a swect or farinaeeous odour are generally safe; never to use any speeics exeept when perfeetly sound, and to take eare that they are eooked in sueh a way as to sccure their being tender and easy of digestion ; and, above all, be their qualities what they may, always to partake of them with moderation. If these rules are attended to, and plenty of bread is eaten, there will be no fatal aceidents; for it is presumed that those persons will abstain altogether from their use, with whose constitutions they never agree.

The eommon Musluroom, the Truffle, and Morel, are important articles of eommeree, but more especially the first,
whether in a fresh state or in the form of ketchup. The extent to which this latter article is prepared is quite astonishing. A single ketchup-mcrehant has, at the moment at whieh I write, in consequence of the cnormous produce of Mushrooms during the present season, no less than eight hundred gallons on hand, and that colleeted within a radius of some three or four miles. The priee of Mushrooms for ketehup in country distriets varies very greatly in different years. In the prescnt year it has not reached, at least in the distriet in whieh I write, one penny per pound, while in some ycars as mueh as fivepence is readily given. In years of seareity, almost any specics that will yield a dark juice is, without seruple mixed with the eommon Mushroom, and it should seem without any bad consequence, cxeept the deterioration of the ketehup. The best ketchup, however, is made undoubtedly from the common Mushroom (A. campestris), and especially from that variety whieh changes to a bright red when bruised. That from A. arvensis (Plate 10, fig. 4) is far inferior. Good ketehup may be made from A. procerus and some others, and that from the Champignon is exeellent, but so strong that it requires to be used with caution. Morels also, when abuudant, yield, treated in the same way as Mushrooms for ketehup, an admirable condiment.

An important use is made of a particular condition of certain species of Mould in the preparation of fermented liquors, under the form of yeast. This consists, as is well known, of morc or less oval bodies, which continually give off joints, so as to produce short, branched, necklacc-like threads. These joints soon fall off, and give rise rapidly to a new generation, which is suecessively propagated till the substance is produeed known under the name of yeast. When plaeed under proper conditions, the joints undergo a further ehange, and give risc
to two or three speeies of Mould. The effect of yeast scems to depend upon the faet that whenever there is an interehange of fluids on two sides of a living membrane, chemical change takes place, and thus there are millions of points, when the ycast-globules are diffused in the wort, at whieh fermentation is earried on. The same observation applies to bread. The different kinds of fermentation depend upon the degrec of temperature to whieh the fermenting body is exposed. The globules of whieh ycast is composed retain their pnwer of vegetation for months, and arc eapable of being preserved in a dry state, in whieh form they are largely imported under the name of German yeast. This compound is, however, somewhat eaprieious in its dcportment. A sudden blow, for instance, is said to destroy its powers of germination. The spawn of Moulds assumes sometimes a flecey form, and instead of globules eonsists of matted threads. In this statc it is the well-known Vinegar-plant, whieh has an extraordinary effect in promoting acetic fermentation under proper conditions of tempcrature. Little at present is known of putrefactive ferments, but there is reason to belicve that a third condition of Moulds, consisting of extremely minute bodies cudowed with molceular motion, is conducive to the process.
The other uses to which Fungi are put are few, and mostly of little importance. The German tinder, or Amadou of commeree, so familiar to eigar-smokers, is made from the pileus of Polyporus fomentarius, beaten out and steeped in a solution of saltpetrc. The pieces arc often of eonsiderable size, and when scwn together are sometimes fashioned into eoarse garments. It is also used for Moxa. Polyporus officinalis was once extensively used in medicine as a purgative, but it is seldom cmployed now. The Jew's-car (Plate

18, fig. 7) and the false Truffle (Plate 23, fig. 3) are still sold in Covent Garden market, in eonsequence of some supposed healing properties, but they belong to the times of the ancient herbalists, when the doctrine of signatures was prevalent, and are rejeeted as useless by all respectable practitioners.

A few speeies of Fungi are used in Eastern Asia and Western Afriea as medieines, but their use is mostly problematical. Cordiceps sinensis, when administered as stuffing to a roast duek, is said to have wonderful properties, but the strengthening quality resides probably in the savoury vehicle.

Ergoted grain, however, whieh owes its origin to a elosely allied Fungus, is a most valuable medieine in the hands of the regular practitioner, though often grievously abused from its specific action on the womb. The peculiar principle upon whieh this depends is, I believe, unknown. Yeast is oceasionally used with advantage as a dressing to foul ulecrs, but whether it has any speeifie virtue, or whether benefit is derived from the earbonie aeid gas evolved from the flour with which it is mired, is perhaps uneertain. It has also been preseribed as an internal remedy.

Polyporus igniarius, when pounded, is used as snuff by the natives in the northern region of Asia. Polysaccum crassipes is employed in the south of Europe to produce a yellow dye. The Bloodrain, of whieh an aceount is given elsewhere, yields a vivid red, whieh is apparently permanent. Several species of Puff-ball, but especially the large Bovista, have anæsthetic properties when burnt, similar to those of ehloroform. Operations have been suecessfully performed under its influence, and it is used for taking hives without the destruction of the bees. Agaricus muscarius is employed both in a fresh and dry state to produee intoxication, and more profitably in a de-
coetion to destroy bugs and flies.* Polyporus betulinus, when dressed, makes exeellent razor-strops, probably from containing minute erystals hard enough to aet upon the steel. When wood is impregnated with the sparn of Peziza cruginosa, it assumes a beautiful green tint. This is applied to various ornamental uses by the turners at Tunbridge Wells. Few people who admire it when manufaetured, are probably aware to what it owes its attraetion.

From the bright green produeed in fairy-rings by the deeayed Fungi of the last year's growth, it has been suggested that Fungi might form a valuable manure where they oceur in great abundanee. If eolleeted for this purpose, they should be piled up with alternate layers of sand or light soil, to absorb their abundant moisture, exaetly as is done in some distriets with seaweed. It is, however, to be feared, that the result would not pay the expense, as the solid parts bear so small a proportion to the fluid. Water-weeds have been eollected as manure within my own experience, but the waste was so great that they did not pay the expense of earting, though, from the quantity of auimal matter whieh aeeompanies them, they promised well; and for the same reason it is to be feared, notwithstanding their riehness in fertilizing matter, that Fungi may prove equally unprofitable.

[^17]
CHAPTER X.

DISEASES CAUSED BY FUNGI.

Fungi were long regarded as the mere creatures of putresecnec, and thercfore as thic consequenee, not the eause of diseasc. A more intimate acquaintanec with their structure and habits has, however, removed much of this prejudice, and almost every onc is now ready to acknowledge what a weighty influence they have in inducing discased condition, both in the animal and vegetable world.

A large treatise* has been written by Robin, relative to their cffects on animals, and there are multitudes of scattered memoirs on the same subjcet; but, unfortunately, the Fungi which oceur in the diseases of man, or other members of the animal kingdom, have seldom been examined by persons intimatcly aequainted with thesc Fungi, so that the species, or cven genera in question, arc often donbtful. It is, however, eertain that many of those which are found on different parts of the mucous membranc of animals, in a more or less advanced stage of growth, are, like the Fungi of ycast, refcrable to common speeies of Mould. It is not probable that in

[^18]these eases Fungi originate disease, though it is pretty eertain that they frequently aggravate it. The spores of our eommon Moulds float about everywhere, and, as they grow with great rapidity, they are able to establish themselves on any surface where the secretion is not suffieiently aetive or healthy to throw off the intruder. Where the spores are very abundant, they may sometimes, like other minute bodies, obstruct the minute eells of the lungs, but there is no reason to believe that they induce epidemic diseases, such as cholera or influenza, aecording to an opinion onee somewhat prevalent, whatever their abundanee may be, or however easily they may be collected, as some assert, at the mouths of sewers, or in other situations likely to produce miasma.

One very eurious produetion, known under the name of Sarcina, from its resembling minute woolpaeks, is a pretty eonstant attendant on eancerous affeetions of the stomach, though not confined to them. Not only has it been found in certain sceretions, but Dr. W. Tilbury Fox has diseovered bodies whieh he eannot distinguish in severe eases of the skin affeetion ealled Tinea tonsurans. Dr. H. O. Stephens found an organism of preeisely the same strueture, though of a bright-orange, on imported bones, at Bristol; and Dr. Lowe found Sarcina in profusion in water in which he had plaeed some erystals of cholesterine. It is probable that this is a mere eondition of some common Mould, but every attempt to make it germinate and produce its proper fruit has at present failed.

The influence of Fungi in the produetion of ecrtain eutaneous disorders is now plaeed beyond all doubt. A few spores rubbed into the skin, or inserted in it, soon produee the disease known by the name of Porrigo lupinosu, and experiments have lately been made which tend to show that this imme-
diate influenee is greater than has been generally suspeeted. Dr. Lowe has indueed skin-diseases by inoculation with the granules of yeast, and he is inelined to attribute a great deal more to the ageney of Fingi than has hitherto been allowed.* An exaet knowledge of their influence, whether externally or interually, meauwhile, is produeing a better mode of treatment, suel salts being administered with good effeet as are fatal to fungal growth.

Fungi, perhaps, are more destructive to inseets than to other members of the animal kingdom. Several species of the genus Cordiceps, as (Plate 23, fig. 4, 5) C. militaris and entomorrhizu, attaek inseets in the pupa or larva state, and, as it should seem, while they are still living. The inseetplant of New Zealand, whieh is so often brought home by travellers, is a familiar example. One species, indeed, in the West Indies, is developed on a perfeet wasp, whieh flies about with it, till it is weighed down by its Sindbad, and dies. The faet was stated many years ago, and obtained but little eredenee ; but I am assured by one who has had an opportmity of ascertaining the real state of the ease, that it is strietly true. Silkworms suffer from a disease ealled Museardine, from its converting them into a hard substance resembling a partieular kind of pastile, and at the time of their death have their tissues completely traversed by the spawn of a Botrytis. A ferw spores plaeed lightly on the skin are suffieient to propagate the disease. Bees also, it is believed, oceasionally die from a similar eause, but this requires confirmation.

It would be easy to multiply instanees, were it necessary, but these are suffieient for iny purpose. The diseases produeed by l'ungi amongst vegetables are far more formidable from the injury they eause in those plants whieh supply the

[^19]staple food of man. Most of the Fungi which attack living vegetables belong to the lower Orders of the tribe. The spawn, however, of higher species is often fatal to trees and herbaceous plants, by rumning over the roots and inducing decay. It has been long known that trees would not in general flourish wherc others had grown before, and this was attributed to exhaustion of the soil ; it is now, however', ascertained that the evil arises from spawn attached to old decaying roots. A most striking instance occurred lately in the Gardens at Kew. Two Dcodaras were planted before the director's housc, within a few yards of cach other, under apparently similar circumstances. Aftcr a time, one of these became unhealthy, and it was suggested that the roots should be examined. A scrutiny in consequence took place, when it was found that an old cherry-trec formerly stood on the same spot, that its roots werc covered with spawn, and that this had extended to the roots of the Deodara. The remains of the old cherry-trec were accordingly grubbed up, and the discased portions of the Deodara removed, and now it bids fair to thrive without any further check. The effect is sometimes apparently so sudden, that it is attributed to lightning, the fact being that the exigencies of the plant have been supplied by a small portion of the roots which remained in a sufficiently healthy condition to convey nutriment. Herbaccous plants-as, for instance, strawberrics-suffer from the samc causc, and it is now matter of certainty, that wherever fragments of wood or sticks exist in manure, whether in the garden or field, there is considerable danger. The formidable Larch-rot, which converts the trunks of larches so frequently into hollow pipes, is often attributable to this causc.

Several r'ungi, as Polyporus squamosus, and other species,
establish themselves on the previously diseased stems of trees. But though sueh Fungi do not attack healthy trees, their spawn soon spreads, and speedily destroys the surrounding healthy tissues. The evil can be stopped only by earefully eutting out the diseased parts, and washing them with a strong solution of eorrosive sublimate, or other substanee which may destroy the spawn without injury to the tree.

Of those which attaek timber when eonverted to the purposes of marine and domestic building, the most formidable, perhaps, is Dry-rot (Plate 2, fig. 1), whieh derives its name from eonverting the wood into a dry powdery mass, though both the Fungus and wood are often sprinkled with large drops of moisture. This may, however, be prevented by previonsly impregnating the pores of the wood with gas-tar, sulphate of eopper, or some other poisonous metallie salt; or, when established, may be greatly modified by eareful, and, if needful, repeated washing with a satnrated solution of eorrosive sublimate. This treatment may not destroy the whole of the spawn, but if not, it will at least greatly diminish its vegetative power.

It is still a question amongst shipbuilders, whether winter or summer felled timber is most subjeet to be affeeted. It is quite eertain that, in dry situations, timber felled when the trunk is most free from sap, is far more durable. There are many aneient buildings in which the saprood is still as free from insects and decay as the firmest heartwood; but where there is not a free eurrent of air, and Fungi can establish themselves, the misehief is so inherent in either ease that it is only a question of time. In domestie buildings, where little ehoiee is exereised in the selection of timber so long as it be of the proper size, and it has not to undergo the serutinizing cye of a doekyard surveyor, tho wood is often deeply impreg-
nated with spawn before it is used. This, indeed, is almost always the ease where trees are grown from old stools, and not from seed. The foxy oak, so common in some distriets, is almost entirely due to this eause; and I have seen sueh timber after a few years eovered with Fungi to sueh an extent as to neeessitate extensive repairs.

A large quantity of Fungi prey on the tissues of living leaves; the spawn of some of these runs over the surfaee ; of some it ereeps amongst the loose tissue of the under side of leaves; while in others it is more intimately ineorporated with the firmer eells.

It is not easy to deseribe the two first apart, as different species of the same genus have different habits. The same, indeed, may be said oceasionally of different individuals of the same speeies, but in either ease they are eapable of inflieting great injury. The Hop Mould, the Rose Mildew, the Vine Mildew, and a multitude of other allied Fungi, partly by feeding on the proper juiees of the plant, and partly by elogging up the breathing pores, exhaust the plant and impede its eireulation aud respiration. Most of these will yield to sublimated sulphur, if timely and judieiously applied. The conditions under whieh these Fungi appear is very different. Some of them never perfeet their true fruit, being propagated by a seeondary fruit analogous to the reproduetive buds of ecrtain Phænogams, as Begonice. In some there are four or five distinet modes of propagation, and in eonsequenee they spread with frightful rapidity. The eultivation of the Vine in Madeira has almost entirely eeased from this eause, and is very preearious everywherc. It is eurious that this Fungus has never been found on the Ameriean Vines, or their numerous varieties, even when eultivated in Europe. The Isabella, for instance, a grape of Ameriean origin, has been always free
from Mildew. But though the varictics which are strictly American do not suffer, European kinds imported into the United States arc frequently affected.

The Potato Murrain arises from a Mould of very different affinities, whose spawn attacks the tissucs of the plant in every direction, being present in the tubers and stems, as well as in the leaves. It has a peculiar property of causing speedy decomposition of the tissucs with which it comes in contact, and hence induees rapid-sometimes inconceivably rapid!decay.

The sulphur remedy is not applicable here, because the spawn is never superficial, as in the Grape and Hop Mildew; nor at prescut do we know of anything which effectually checks its progress, though numberless plans have been suggested. Eaxly planting, and destruction of the haulm as soon as the Fungus makes its appearance, give the best prospect of sucecss.

The putrescence of Apples and other fruit is often promoted by a similar cause, as first pointed out by Dr. Hassall, who induced decay in perfectly healthy fruit by inoculation, but never apparently without some external lesion. A multitude of other Fungi, belonging to various genera, induce disease in leaves, as in the Mulberry, Vine and hundreds of other plants; but I cannot speak of these now, but must pass on to those species with loose dustlike fruit, which prey upon our cercals, and other objects of cultivation in the fields. The diseases produced by these are known under the name of Smut, Bunt, Mildew,* Rust, etc., and are often extromely in-

[^20]jurious. Some of these, as Smut and Bunt, attaek the tissues of the seeds, their floral envelopes, or the reeeptaele in whieh the flowers grow, or, in rarer instances, the leaves and stems, eonverting them into a mass of loathsome, sometimes fetic dust; others, as Mildew and Rust, attaek the leaves and stalks more espeeially, forming little rusty spots or streaks, and exhausting the plant by the growth of their spores and spawn at its expense. Sometimes they exercise a speeifie aetion upon the tissues, and eause the plant to assume various thiekened or distorted forms analogous to those which are produced by the punetures of inseets. Some of these, as Buat, admit of easy extirpation,* as the spores will not grow when treated by various ehemical substances, and, as they are lighter than water, are in great measure removed by simply washing the seed. The others, as far as is at present knowu, admit of no remedy, though several nostrums are extensively sold under the pretence of preventing their growth.

There remains another Fungus produetive of disease in the grains of rye, barley, wheat, and many field grasses, under the name of Ergot. The white substanee of the seed is converted by this Fungus into a firm mass, without any appearanee of meal, and when the Ergoted grain is sown, it produces a small species of Cordiceps (Plate 23, fig. 7), not unlike the speeies which attaek inseets.

[^21]Ergot, though useful from its medical properties, when prevalent in our fields eauses cattle and sheep to slip their young; and when forming a large proportion in bread, especially in those distriets where rye is much used, produces a fatal gangrene. This effect has at present been observed only in man, but it is probable that many diseases in eattle arise from eating it in seasons when it is peculiarly abundant. Though so powerful a drug in affeetions of the womb, it is at times largely eaten by ehildren on the Continent, under the name of St. John's bread, without producing any evil eficets whatever.* It is observable that the same bad effeets are sometimes produeed by mouldy provisions which are produced by Ergot in bread. In countries where sausages are dried for winter use, and badly kepi, misehief often arises, and the same effeet has sometimes followed the use of a peculiar kind of rolled bacon. Whether this is attributable to some deeomposition in the meat, or to the presence of Mould, is uneertain. The fatal eases which have oceurred lately from the use of fresh sansages, induec one to believe rather in the latter notion, though unfortumately the data and the results of analysis have not been elear enough to enable one to form a safe epinion.

[^22]
CHAPTER XI.

CULTIVATION OF FUNGI.

Were Fungi objects of more general interest, there is little doubt that in skilful hands a great many species would admit of cultivation. At present, however, except under the care of a few inquirers into their mode of growth and fructification, attempts have been made to propagate a very few kinds only.

The three to which attention has been directed most are the Trufflc* (Platc 23, fig. 2), Boletus edulis (Plate 15, fig. 6), and the common Mushroom (Platc 10, fig. 2). A good deal has been written respecting the cultivation of Truffles, and one person even professed that he should soon have Truffle spawn for sale; but the treatises which have appeared have been, for the most part, mere eatehpenny productions, while the experiments instituted have been gencrally ill-directed. In one ease whieh promised a good deal, and of which I was invited to witness the result, it was found on inquiry that cxperiments had been made with the refuse Truffles of one of the Italian shops in London, which had been artificially dried, and which had therefore for the most part lost their powers of vegetation. But even in this ease there were sigus of the

[^23]production of spawn, and, from what I saw of it, I felt almost assured that in better hands the cultivation would at last succeed. The grand point is to have plenty of lime in the soil, without which there is little, if any, hope of Truffles. A sort of cultivation is practised in Poitou, which consists in enclosing a tract of downs, and sowing it with acorns, and in the course of a few years a plentiful crop is almost uniformly the result. The Viscomte Noé, in the south of France, succeeded in raising Truffles in his woods by irrigating the ground, after a certain degree of preparation, with water in which the skins of Truffles had been rubbed. At present, however, 110 progress has been made in the garden, nor do gardeners seem inelined to persevere in their attempts, though sucecss would be sure to be highly remunerative.

As regards Boletus edulis, which is so highly esteemed in many parts of the Continent, the only attempts which have been made at cultivation are similar to those of Viscomte Noé, and these have been attended with success. In either case pains were taken to fonce out the wild pigs, which are the most deadly enemies to both Truffle and Boletus.

The cultivation of the common Mushroom is carried on to a very great extent wherever scientifie gardening is praetised, but nowhere to a greater than at Paris, where the Catacombs present all the requisite conditions. Mushrooms are gencrally raised from artificial spawn, which is purchased of the scedsmen, and inscrted in fragments amongst mould earefully prepared and placed either on the ground or on convenient shelves; and, where proper attention is paid to the requisite degree of temperature and moisture, care being taken to exceed neither, the cultivation is almost always sueeessful and very profitable. Some of the best cultivators, howerer, as Mr. Ingram at Belroir, make use of nothing more than
straw which has been thoroughly trodden underfoot in the stable or riding-school. When this is placed in a heap, it is soon penetrated in every dircetion with spawn, and may be used in screral ways for the production of Mushrooms. Splendid crops may be obtained from it, from Asparagusbeds, from mould in spent Cucumber and Melon-frames, either covered with green turf or exposed, as well as from the ordinary Mushroom-shed.

It has been questioned whether Mushrooms might not be raised successfully on lawns, and there is no doubt that this sort of cultivation would succeed. But even supposing it should, it must more or less interfcre with the nice keeping of the surface, a point of so mueh conscquence to English gardeners, which would incvitably cxhibit herc and there dead patches, the effects of the last ycar's growth. And if A. arvensis (Plate 10, fig. 4) should be chosen, which would probably be more easy of cultivation in such situations than any other spccies, the extent of dead surface would be considcrable. There is another very great objcction to the cultivation of this specics, which is that the spawn at times gives out a most oppressive smell. During the last summer I was astonishcd at the very powerful odour which arose from the large rings of Agaricus arvensis, creating at once a sense of nausea. 'Ihis, indeed, was so aunoying, that even the labourers, whose perceptions of sueh matters are not in general very delicate, obscrved it. This observation applics also to the Champignon (Plate 14, fig. 5), which is one of the most eligible in other respects for lawn cultivation. The spawn of A. arvensis penetrates to a great deptll, and Mrs. Husscy* relates an instance where the scent was so overpowering,

[^24]that it was with great difficulty that the labourcrs who had to dig out a quantity of the spawn which had become a nuisance, could accomplish their task.

An csculent species of Agaric is raised at Naples by simply depositing a quantity of coffcc-grounds in a warm cellar. No spawn is used, but the Fungus scems very gencrally to make its appearance after a certain time. Like most species which grow in such habitats, it is probably a merc state of some common form. A Polyporus used for food is raised in Italy from hazcl-stumps, by simply charring them partially, and then supplying them with a proper quantity of water. Another specics, P. tuberaster, springs up in Italy from conglomerated masses of earth and spawn, known by the name of Pietra Funguja, or Fungus-stonc, when placed in the conscrvatory; and I have seen specimens raised in Lec's garden, at Hammersmith, from imported spawn. Attempts have been made to cultivate a fine varicty of Mnshroom from spawn imported from the Swall River. It is to be hoped that this may be tried again, and that Agaricus fabaceus, an American spccics, may also have another trial. A few specics of Fungi occasionally make their appcarance in the soil or on wood imported with exotic plants. I have secn, for instance, Schizophyllum commune in grcat abundancc, accompanied by a pretty white Marasmius. The lovely Marasmius hematocephalus latcly made its appearance at Kew, in a pot with a species of Carludovica; the curious Aseröe camc up in the same cstablishment on Australian mould, and other species might be noticed of which I have specimens in my herbarium, and amongst thesc Hypoxylon marginatum, an Amcrican spccies, which was obscrved in the conscrvatory at Clatsworth. These, however, are mere accidents, but they tend to show that many species might ornament our stores from imported spawn, if their introduction was desired.

As regards matters of seience or euriosity, the reproductive bodies of many Fungi ean be made to germinate very readily by plaeing them in fluid in an insulated cell, or by simply putting them upon a slip of glass under an air-tight bell-glass. In cases where they do not germinate, there is some fault in general either in the temperature or degree of moisture ; or sometimes because mere water is not suffieient, without an admixture of sugar or some other organic matter. Many speeies of Mould may be raised very easily upon paste made with ground riee under a bell-glass, and some Fungi may be brought to perfection on rotten wood in the same condition. The well-known Ergot may be indueed to produce its very curious perfect form (Plate 23, fig. 7), by simply sowing the infected grains in a garden-pot, and avoiding cxtremes of dryness or moisture.* Even some of the speeies which are parasites on living leaves may be propagated either by direct sowing of the spores on the young leaves, or watering the soil in whieh the plant proposed to bear the parasite grows, as in the case of the yellow Rose Rust, with water in whieh infeeted leaves have been duly steeped.

It may be stated, in conelusion of this Chapter, that Polyporus igniarius has been artificially raised in Germany, by merely colleeting trunks impregnated with spawn, or likely to be so, and keeping them properly irrigated. Several crops have been obtained by this method in the course of the year.

[^25]
CHAPTER XII.

COLLECTION AND PRESERVATION OF FUNGI.

The apparatus neeessary for the eolleetion of Fungi is neither large nor expensive. A large, oblong, shallow basket, without a lid, but with the bottom hollowed out a little at either end, a few tin boxes of various sizes, a stout, well-tempered knife, which will readily eut a good slice off a prostrate log, and a common magnifier, are all that is neeessary. If Truffles are the objeet of seareh, a little rake in a leather ease, which will serew into a handle, must also be provided. The basket should be shallow, that the specimens may not erush each other. Small and delieate speeies may be loosely wrapped in paper and seeured in the smaller boxes, while in some whieh are very delicate, where it is necessary to aroid contaet with the sides of the box, it is a good plan, if the Fungus grows on wood, to make the sliee of wood very thin at one end, so that when the speeimen is placed in the box, it may be secured by letting a portion of the thin end be grasped by the lid. The most delicate species may be safely conveyed in this manner, if a little taet is used.

Whoever wishes to arrive at an accurate knowledge of the natural productions of a country, will find that it is necessary to preserve specimens, that he may be able from time to time
to compare one with another. One great drawbaek whieh attends on the study of Fungi is the diffieulty of preserving most of the larger and more important speeies in a state fit for examination. The difficulty is, however, not insurmountable, and with a little praetice useful speeimens may readily be prepared.

The harder speeies, suel as the Polypori, ete., aecording to their size, may be dried between bibulous paper after the fashion of other plants, eare being taken that the papers are ehanged with suffieient frequeney. The larger speeies, whieh do not admit of this treatment exeept in the form of seetions, may be simply plaeed in a warm, dry plaee, and when the moisture is well evaporated, the larve of any inseets whieh may remain in them may be destroyed by a few minutes' submission to the leat of an oven, taking eare, however, that it is not so hot as to seoreh the speeimens.

As regards the fleshy Fungi, it is better generally to adopt two plans :-first, to dry a few speeimens between sheets of paper, made prineipally of eloth, after a little of their moisture has been evaporated by eontaet with the air. This, however, requires some eare, to prevent deeay from superabundant moisture. The other is to form eareful seetions of the different parts, so as to exhibit the several eharaeters, removing from the pileus and stem the greater part of the substanee. If too many speeies are not put together in the drying-papers, exeellent speeimens may be made in this way. The spores may be eollected on white or hlaek paper by merely plaeing a portion of the pileus with its hymenium upon it, and eovering the whole for a few hours with a bell-glass.

The speeimens, when dry, must be washed carefully with a solution of corrosive sublimate in pyroligneous naphtha, or some other solvent, taking eare that it is such as will not
diseolour the plants. Turpentine and corrosive sublimate may also be used, but as the corrosive sublimate is not soluble in it, the effeet is uncertain. When the specimens are dry they should be glued to paper, whieh, if of the size mostly used for the herbarium, may be kept loose, but if of various sizes, as is perhaps most convenient, each slip of paper may be fastened with a small pin, so that several specimens may be ineluded in one sheet. The slip slould always bear some definite proportion to the sheet for convenience of arrangement. No portion of the herbarium requires more frequent inspection to prevent the ravages of mites and other inseets; and, above all, the room in whieh the Fungi are placed must be free from damp, or the specimens, especially those which are dried without making seetions, will be apt to mould. The great ineonvenienee about these is, that after a time, from the presence of some soluble salt, they are apt to vary with the weather as to their eondition of dryness, and then the papers on which they are placed will be stained. At present I am not aware of any remedy for this ineonvenience.

As, after all possible eare, the colours, and many of the minuter eharaeters, will be more or less impaired, it is advisable never to place a specimen within the papers for drying without at the same time making an aecompanying note, giving such information about it as may serve to identify it. Without this, mistakes and perplexities will often arise, and a little eare at first will grow into a habit, making it almost impossible to attempt to dry a speeimen without a proper note. The eommonest speeies will thus lave its proper value, and will sometimes eome into use, when it is least expeeted.

The Myxogastres are best preserved in the herbarinm by fastening the speeimens to the base of a neat shallow box, with a lid eapable of being easily removed. If eaeh box is
gummed to a slip of paper, exactly as if it were a speeimen, and does not execed a quarter of an ineh in depth, no ineonvenience will be found in the herbarium from its presenee, and there will be no chance of the destruetion of the plant, which it will be almost impossible to avoid by any other method.

CHAPIER XIII.

SYSTEMATIC ARRANGEMENT.
This has already been slightly sketehed out, and the details may be reserved for the eharaeters whieh follow of the genera of Fungi whieh oceur in Great Britain, and the divisions under whieh they are arranged. It is impossible here to diseuss the various arrangements whieh have been proposed. The one adopted is that whieh was given in Dr. Lindley's 'Vegetable Kingdom,' and whieh, as regards the prineipal groups, is almost identieal with that of Fries. It may be oljeeted that it rests on a single charaeter, but in spite of this objection, I know of 110 arrangement which gives the true affinities of Fungi better, and if it be recolleeted that it is impossible to arrange any quantity of natural productions in a straight line so as to exhibit their relations, but that these may be illustrated rather by groups ranged round a eommon centre, bearing relations to the several groups whieh surround them, it will be seen, I think, that the arrangement does place together those species which are elosely allied, though conneeted also with others in a contiguous group. Thus the Uredines pass through Podisoma into the Tremellince, and Botrytis, or Sporotrichum, through Isaria to Clavati. When the sporidia in an aseus are reduced to one, and the sae fits elosely to the sporidium, the body so
formed is seareely distinguishable from a spore, and we may then have a passage from the aseigerous Fungi to the sporiferous. It is thus that we have sometimes the two forms of fruit in the same hymenium, as in Tympanis (Plate 1, fig. 13).

I do not enter into the question of the affinities of Fungi with other groups, beeause it supposes a knowledge of those groups. I must refer, therefore, to what is said upon the subjeet in the 'Introduetion to Cryptoganie Botany.'

As regards the affinities whieh exist between one group and another, we must take eare that speeies are not plaeed together merely from similarity of external form. Nothing ean be more elose, for instanee, than the external resemblanee between a simple Clavaria and a Geoglossum (Plate 22, fig. 23), and yet no Fungi are more essentially distinet. So long as the true strueture of the hymenium in the higher Fungi was unknown, they might be associated, but to assoeiate them now would be to substitute analogy for affinity. Again, under similar eireumstanees, a Psilopezia and Corticium might be plaeed in the same genus, but the asei of the former indieate its allianee with Peziza, and not with Auricularini. On the eontrary, the relation of Hysterangium to Phallus, though apparently so distant when the latter is expanded, is most evident if the young plant in the egg state be examined. And in the same way the relations of Tremellini to Uredines are elear, if the large, often lobed or septate eells from whieh the long threads whieh bear the spores are developed, be eompared with the primary spores of Podisoma, while it is remembered that these spores give rise to little buds, whatever be their nature, from their sides, whieh are at the very least analogous with the tertiary spores of some Uredinere. The transition from Tremella to Thelephora through such speeies as T, sebacea (Plate 17, fig. 6) is almost perfeet.

In eonelusion, it may be well to eaution young students of Fungology against eonfounding galls with Fungi. The similarity of form whieh often exists between them is surprising, as if Nature delighted in reprodueing the same form under eireumstanees so very different. Neither must he eonfound with Fungi the discased hairs of leaves, which assume suel a varicty of forms and eolours, with truc epiphytes. These forms, indeed, are all registered by botanists under the genus Erineum, but they have no more pretence to be admitted amongst Fungi than oak-apples or oak-spangles.*

* Since the abore was written, I have seen De Bary's paper on tho production of asci in Tittlo swollings which occur on the gills of Agaricus melleus, after the white spores have fallen. This important observation requires further investigation; but even though it should turn out, whieh I do not think probable, that all Hymenomyectes have a seeondary form of fruit, the arrangement which follows would not ecase to be natural, though the terms under which it is exhibited would require to bo altered. Sce 'Botanische Zeitung,' 1859.

Family I.-HYMENOMYCETES.

Hymenium at length exposed, inferior in the higher specics, consisting of closcly packed cells, of which the fertile ones (sporophores) bear naked, mostly quaternate spores, on distinet spiculcs. Vegetation centrifugal.

Order 1. AGARICINI.

Hymenium inferior, spread over the surface of distinct gill-like processes, which are easily divisible into two plates.

1. AGARICUS, L.

Gills membranaccous, persistent (not melting) ; trama filamentous, continuous with the substance of the pilcus; edge acutc. Fleshy putrescent Fungi.

Scries 1. Leucospori.-Spores white.
Subgenus 1. Amanita.-Veil universal, distinct from the cuticle of the pileus. Hymenophorum distinct from the stem.

* Ring distinct.

1. A. (Amanita) vernus, Bull.; white; pilcus at first ovate, viscid, margin even ; stem bulbous, closely embraced by the free limb of the volva; gills frec.-Bull. t. 108.

In woods, carly in the summer. Poisonous.
2. A. (Amanita) Phalloides, Fi. ; pilcus at first campanulate, viscid when moist; margin even, regular; volva free above, bulbous; gills rounded, ventricose. (Plate 3, fig. 1.)

In woods. Variously coloured, often greenish.
3. A. (Amanita) muscarius, L.; pileus eonvex, at length expanded, elothed with seattered warts, the remains of the adnate volva; flesh beneath the viscid eutiele yellow ; margin striate; stem bulbous, sealy at the tuberous base, stuffed with eottony threads; gills reaehing the stem and forming deeurrent lines upon it.-Grev. $t .54$; Huss. i. t. 1.

In woods, espeeially of bireh. Mostly of a bright searlet, but sometimes umber, ete. Warts white or yellow. Poisonous.
4. A. (Amanita) pantherinus, $D C$.; pileus eonvex, then expanded, margin striate ; flesh white beneath the viseid eutiele; stem nearly smooth, furnished at the base with a volva the extreme entire obtuse margin of which alone is free.Kromb. t. 29.f. 10-13.

In woods or in pastures, near trees. Supposed to be poisonous. Brownish, not red or reddish-brown like the last.
5. A. (Amanita) strobiliformis, Fr .; pilens eonvex, then expanded, studded with persistent warts ; flesh compaet, white; margin even; stem bulbous, the base subterrancous, rough with the remains of the volva; ring torn; gills rounded behind and free. (Plate 3, fig. 2.)

Borders of woods. Rare, attaining a large size. Eseulent.
6. A. (Amanita) Mappa, Batsch.; pileus convex, at length plane, without any separable eutiele ; margin nearly even ; flesh white; stem nearly smooth, bulbous below; free edge of volva aeute and narrow ; gills adnexed.-Vitt.t. 11.

Under trees. Colour various. Habit like that of a small A. Phalloides; edge of volva somewhat like that of A. pantherinus. Poisonous.
7. A. (Amanita) rubescens, P. ; pileus eonvex, then expanded, at first elothed with seattered mealy warts; margin striate; whole plant beeoming red when bruised ; ring entire; stem attenuated upwards, squanulose; gills reaehing the stem
and forming decurrent lines upon it ; volva obliterated.-Huss. i. $t .23$.

In woods, very common. Known by its reddish colour when rubbed. Quality doubtful.
8. A. (Amanita) excelsus, Fr.; pilcus convex, at length plane, at first innato-fibrillose, clothed with irregular mealy warts, which soon vanislı; margin nearly even; flesh white; stem bulbous, scaly below; gills free, rounded behind; volva evanescent. (Plate 3, fig. 3.)

In woods. Supposed to be poisonous. Margin sometimes sulcate. Brownish.
9. A. (Amanita) asper, P. ; pileus at first convex, rough with minute subersistent warts; flesh brownish beneath the cuticle ; margin even ; gills rounded behind, free.-Vitt.t. 43 .

In woods. Resembling in many respeets A. rubescens.
10. A. (Amanita) megalodactylus, Berk. and Br.; strongscented; pileus soft, eonvex, smooth, reddish-grey ; cuticle entirc ; margin even ; stcm somewhat bulbous, solid, fibrillose; ring very large, plaeed near the top of the stem ; gills moderately broad, free, pallid, at length tinged with red.

In a wood at Wothorp, ncar Stamford. Pileus $3 \frac{1}{2}$ inches across, stem 5 inehes high. Allied to A. lenticularis, but the solid stem is not squamulose, and the gills do not assume an olive tint.

** Ring none.

11. A. (Amanita) vaginatus, Bull.; pilcus thin, at first campanulate, then nearly plane; margin deeply suleatc; stem flocculoso-squamose, fistulose; volva sheathing, loose; gills frce, at first whitc. (Plate 1, fig. 4.) -Huss. ii. $t .34$.

In woods and under trees; very eommon. Varying greatly in colour, size, and breadth of the volva. A. nivalis, Grev.
t. 18, is a pure-white variety, with an expanded volva, and is by no means ecnfined to mountain pastures.
12. A. (Amanita) Ceeiliæ, Berk. and Br.; pileus at first ovate, then eampanulate, elothed with seattered subpersistent warts; margin grooved; stem stuffed, silky above, squamulose below; volva soon breaking up. (Plate 3, fig. 5.)

In woods. Mouse-grey. Distinguished by its less perfeet volva and stuffed stem, whieh does not simply eoutain a few eottony fibres, as that of A. vaginatus.

Subgenus 2. Lepiota.-Veil universal, concrete with the cuticle of the pilcus. Hymenophorum distinct from the stem.

> * Cuticle dry.
a. Ring moveable.
13. A. (Lepiota) proeerus, Scop.; pileus fleshy, at first ovate, then expanded and umbonate ; eutiele thiek, torn up into seales; stem tall, hollow, bulbous, variegated with elosepressed seales; ring moveable; gills very remote.-Vitt.t.24. Huss. i. $t .88$.

Pastures. Often several inehes aeross. Eseulent. Sold in Covent Garden market.
14. A. (Lepiota) rachodes, Vitt.; pileus fleshy, at first globose, then expanded and depressed ; eutiele thin, broken up into persistent seales; stem hollow, not spotted ; bulb at first abrupt, ring moveable ; gills remote. (Plate 3, fig. 6.) Huss. ii. $t .38$.

In shady pastures. Flesh mostly red when bruised; not so good for food as the last, if really wholesome. Intermediate forms oceur, whieh it is diffieult to refer to either speeies.
15. A. (Lepiota) exeoriatus, Scheeff.; pileus fleshy, obseurely umbonate; eutiele thin, breaking up into patehes; stem short, hollow, eylindrical, even, nearly white, slightly
bulbous; ring moveable; gills rather remote.-Scheeff. t. 18, 19.

In pastures. Far smaller than the two foregoing.
16. A. (Lepiota) gracilentus, Kramb.; pileus somewhat fleshy, obtusely umbonate; eutiele thin, breaking up into adpressed persistent patehes; stem hollow, elongated, slightly bulbous; ring thin, free, evaneseent ; gills remote, at length pallid.-Kromb. t. 24.f. 13, 14.

In pastures, Laxton, Northamptonshire. Resembling A. procerus, but more delieate.
17. A. (Lepiota) mastoideus, Fr . ; pileus somewhat fleshy, strongly and acutcly umbonate; cuticle thin, breaking up into seattered papillæ ; stem hollow, equally attenuated from the bulb, weak; ring evancseent, moveable; gills very remote, pallid.-Berk. in Mag. of Zool. and Bot. i. t.2.f.1.

In woods, King's Cliffe. In my plant the stem is minutely villoso-squamose. Fries describes it as smooth and even.

b. Ring fixed.

18. A. (Lepiota) aeutesquamosus, Weinm.; pileus obtuse, fleshy, rough with ereet acute squarrose seales; stem below the ring rough like the pileus, or silky, bulbous, pruinose above ; gills laneeolate, approximate.-Huss. ii. $t .5$; Kromb. t. 1. f. 18, 20. A. Mariæ, Eng. Fl. A. asper, Abbildungen der Schw.

On soil in gardens. Generally of a tawny tint; very beautiful.
19. A. (Lepiota) Badhami, Berk. and Br.; pileus at first eampanulate, obtuse, then expanded or depressed and umbonate lispid, with minute velvety ermine-like seales; stem bulbous, white, silky, stuffed with eottony threads; ring firm, slightly moveable; gills remote, ventrieose; whole plant, when wounded, of a saffiron-red.

Under Yew-trees, Apethorpe, Northamptonshire. Pileus 2-4. inches across ; allied to A. c'ypeolarius, but more robust. Smell rather disagreeable.
20. A. (Lopiota) clypeolarius, Bull.; sweet-seented; pileus fleslyy, umbonate, at first clothed with an even crust, at length broken up into floeeose seales; stem fistulose, with the evaneseent ring floceoso-squamose; gills free, approximate.Bull. t. 405, 506. f. 2.

In woods and in hothouses. Varying greatly in eolour, white, yellow, pink, rufous, brown, ete.
21. A. (Lepiota) cristatus, Fr.; strong-seented; pileus slightly fleshy ; euticle at first continuous, naked, then broken up into scales; stem slender, fistulose, even; ring entire, evaneseent; gills free, at length remote. (Plate 3, fig. 7.)Huss. i. $t .48$.

In fields, lawns, ete. Very common. Pretty, and remarkable for its strong seent. Several varieties oceur in hothouses.
22. A. (Lepiota) Vittadini, Moretti; pileus flesliy, obtuse, rough with strong wart-like seales, as is also the stout solid stem ; ring large; gills ventricose, thiek, free.-Huss. i. $t .85$.

In pastures. Rare. Norfolk, Northamptonshire, Huntingdonshire, etc. A large species, of a pure white ; extremely beautiful.
23. A. (Lepiota) naucinus, $F r$. ; pileus soft, fleslyy; eutiele entire, or breaking up into granules, somewhat umbonate and even in the eentre; stem stuffed, attenuated upwards; ring large, at length evaneseent; gills pallid, free, approximate; spores very large.-Kromb. t. 24. f. 20-23.

In fields. Tunbridge Wells, F. Currey, whose speeimens are of a delieate tan, the gills at length assuming a dirty-pink luce. The large white spores are very eharacteristic. It may be confounded very easily with A. cretaceus.
24. A. (Lepiota) copæstipes, Sow.; pileus submembranaceous, at first ovate, then expandcd, mealy and scaly, widely umbonate; margin plicate; stem hollow, floccose, thicker in the middle or at the base; ring cvancscent; gills at length remote.-Grev. t. 333; Sow. t. 2.

On tan and leaves in hothouscs. White or yellow; the stem varies in form. Sowerby's plant has white spores, like Greville's. The species is probably of exotic origin, as it never grows in the open air. It is uncertain whether the plant with an equal stem which often grows in similar situations is the same species.
25. A. (Lepiota) granulosus, Batsch.; pileus fleshy, at first convex, then expanded, mealy with innate granules; stem rough, like the pileus below the narrow ring; gills crowded, free, whitc.-Grev. t. 104; Huss. i. t. 45.

In woods and on heaths. White, pink, vermilion, yellow, ctc. Always easily istinguished by its mealy, granular aspect.
26. A. (Lepiota) polystictus, Berk.; inodorous, fleshy; cuticle continuous or broken into scales; stem attenuated downwards, stuffed with cottony threads, scaly bclow the fugacious ring, silky above ; gills crowded, rounded before and behind, frec, white, with a pale-yellow tinge.

Amongst short grass, by roadsides. Northamptonshirc and Denbighshirc. Stem pinkish above the ring; pilcus $1 \frac{1}{2}$ inch across.

** Pilcus viscid.

27. A. (Lepiota) gliodermus, lir.; pilcus thin, soft, campanulate, convex, smooth, even, rufous, viscid; stem whitish, floccoso-squamose, stuffed with cottony threads; ring torn; gills fiec, white, approximatc.

In woods. Rare. Wothorp, ncar Stamford. Pilcus $1 \frac{1}{2}$ inch across.

Subgenus 3. Arvillaria.-Veil partial, annular. Hymenophorum confluent with the stem.
28. A. (Armillaria) ramentaeeus, Bull.; pileus fleslyy, obtuse, dry, villoso-squamose ; stcm solid, uncqual, sealy ; ring inferior, made up of woven flocei; gills emarginate, crowded, whitish, at lengtlı discolourcd.-Bull. t. 595. f. 3.

On the ground. Not eommon. King's Cliffe. Whitish or ycllowish, sealcs brown, odour unpleasant. Known from cognate Tricholomata by its ring.
29. A. (Armillaria) constrietus, Fr.; pileus fleshy, at first convex, obtuse, even, dry, smooth, with an evaneseent silky lustre ; stem solid, nearly equal ; ring superior, evaneseent; gills erowded, emarginate.-Batt. t. 7 B.

In pastures where the ground is bleached with urine. Rare. Northamptonshire. Pure white ; odour very strong, like that of fresh meal. The ring in my speeimens is wanting. (See Eng. Fl. vol. v. part 2, p. 11.)
30. A. (Armillaria) melleus, Vahl; pilcus flesly, at length plane, elothed with fibrous seales; margin striate; stem elastie; ring floceose; gills ending in a decurrent tooth, pallid, at length mealy from the white spores, and spotted with reddishbrown. (Platc 4, fig. 1.)

On dead stumps. Very common. Palc-rufous, more or less shaded with yellow, densely eæspitose. Aerid when raw, but eaten on the Continent. Sometimes, like the last, ringless. Agaricus laricinus, Bolton, is probably only a variety of this speeies.
31. A. (Armillaria) mueidus, Fr.; pilcus thin, eonvex, glutinous; stem rigid, thiekened at the base; ring superior,
deflexed, with the margin ercet; gills rounded, distant, striatodecurrent, white.

On beech. Southern counties. Pure white, or with a cinereous tinge. Very beautiful. Two inehes or more across.

Subgenus 4. Tricholoma.-Stem flesly; gills with a sinus behind. Veil obsolete, or, if present, floccose, and adhering to the margin of the pileus.

* Pileus either viscid, squamulose, fibrillose, or pubescent.

32. A. (Trieholoma) equestris, Linn.; pileus yellow, inclining to reddish, fleshy, compaet, obtusc, squamulose, viscid ; stem solid, blunt, sulphur-coloured, as well as the free crowded gills. (Plate 4, fig. 2.)

Amongst fir-leaves. Rare. East Bcrgholt, Dr. Badham.
33. A. (Trieholoma) sejunetus, Sow.; pileus fleshy, convex, at length expanded, umbonate, unequal, slightly viscid, streaked with black fibres; stem stout, solid, ventricose, subsquamulose ; gills cmarginatc, rather distant, broad, whitc.Sow. t. 126.

Pileus several inches across. I am not acquainted with this species.
34. A. (Trieholoma) portentosus, Fr.; pilcus fleshy, convex at first, subumbonate, unequal, viseid, streaked with blaek innate lines ; stem stout, solid, equal, striate ; gills very broad, emarginate, white, at length distant and pallid.

In woods. King's Cliffe. Closely resembling the last.
35. A. (Trieholoma) fueatus, Fr. ; pilcus thin, at first conical, then convex and expanded, viscid, streaked with imnate lines; dise fleshy ; stem solid, somewhat bulbous, squamulose ; gills emarginate, rather crowded, tinged with yellow.

In pinc-groves. Closely allied to A. portentosus. Pilcus shining when dry, often dingy. The thin pilcus, squamulose
subbulbous stem, and yellowish gills, are its prineipal differenees,
36. A. (Trieholoma) spermaticus, $F r$. ; white ; pileus somewhat fleshy, at first convex, then expanded, smooth, viseid ; margin membranaceous, naked; stem stuffed, at leugth hollow, twisted, even ; gills emarginate, rather distaut, eroded.Paul. t. 45.

In fir-woods. Coed Coeh, Denbighshire, Oetober 13, 1859. Sinell strong, umpleasant. Pileus several inehes aeross.
37. A. (Tricholoma) nictitans, $P r$.; pileus fleshy, eonvexoplane, obtuse, even, smooth, viseid ; stem stuffed, dly, clastie, nearly equal, squamulose, yellow, as well as the erowded obsoletely spotted gills, whieh from the first are rounded behind and free.-Bull. t. 574 4. f. 1 ; Huss. ii. $t .46$.

In woods. East Bergholt, Dr. Badham.
37^{*}. A. (Tricholoma) fulvellus, Fr.; pileus fleshy, eon-vexo-plane, viseid, even, dise darker, punetato-rugose ; stem stuffed, then hollow, fibrillose, at length rufous, tip naked; gills erowded, white, at length rufous, rounded, then emar-ginate.-Bull. t. 555. f. 2 .

In woods. Coed Coeh, Oetober 1859. Fries eonsiders this merely a subspeeies.
38. A. (Tricholoma) flavo-brunneus, Fr.; pileus fleshy, at first eonical, at length expanded, viseid, elothed with little streak like seales; stem hollow, somewhat ventrieose, fibrillose, at first viseid, tip naked; gills emarginato-deeurrent, erowded, yellowish, beeoming rufous.

In woods. Not uneommon. Smell like that of new meal. Sehrffer's t. 62, quoted under this by Fries, appears to be $A g$. melleus.
39. A. (Tricholoma) albo-brunneus, P. ; pileus flesly, hemispherieal, obtuse, viseid, streaked ; stem solid, short, equal,
white, and squamulose above; gills emarginate, crowded, white, at length tinged with brown.-Sow. t. 416.

In woods. Not uneommon. Smell like that of new meal.*
40. A. (Tricholoma) rutilans, Scheeff.; pilcus fleshy, dry, variegated as well as the stem with purple down ; gills rounded, crowded, yellow, edge thiekened, villous.-Sow. t. 31.

On pine-stumps. Very common. Easily distinguished by its yellow gills and purple down. Often extremely beautiful.
41. A. (Tricholoma) Iuridus, Schreeff.; pilcus fleshy, dry, smooth, undulated, at lengtl breaking up into little fibres; stem stout, stuffed, unequal, smooth ; gills emarginate, erowded, dirty white.-Scheff. t. 69.

In woods. Common. Smell like that of new meal. (See deseription in 'English Flora.') Distinguished from 34 and 35 by its dry pileus, and other notes.
42. A. (Tricholoma) Columbetta, Fr. ; white ; pileus fleshy, at first ovate, moist, obtuse, rigid, at first smooth, then more or less silky or squamulose ; margin involute, at first downy ; stem stout, solid, unequal, striate, nearly smooth ; gills erowdcd, emarginatc, thin, somewhat serrated.-Kromb. t. 25.f.6, 7.

In wonds. Coed Coch, Oct. 1859. Edgbaston, Withering. Very like A. allus, but that has a smooth pileus.
43. A. (Tricholoma) imbricatus, Fr. ; pilcus flesly, eompact, at first convex, obtuse, dry, innato-squamulose ; margin at first inflexed, pubescent; stem stout, solid, pruinose above; gills emarginate, adnexed, rather crowded, at length rufous. (Plate 4, fig. 3.)

[^26]In fir-woods. Taste mild. Stem stuffed, at length hollow.
44. A. (Tricholoma) vaccinus, P.; pileus ficshy, at first eampanulate, umbonate, dry, rough with floceose scales; margin involute, tomentose; stem hollow, equal, fibrillose ; gills fixed, rather distant, at length rufous.

In fir-woods. East Bergholt, Dr. Badham. Nassington, Northamptonshirc. Taste disagrecable.
45. A. (Tricholoma) crassifolius, Berk.; pileus fleshy, waved, minutely adpresso-squamulose, umbonate, oehraeeous; dise umber; stem solid, nearly equal, pruinose; gills thiek, moderately distant, nearly free, at length yellowish, stained with brown.

In fir-woods. Winkbourn, Notts. Pileus 2-4i inches across. Smell rather strong.
4.6. A. (Tricholoma) murinaceus, Bull.; pilcus thin, firm, brittle, at first campanulate, then expanded, eraeked, streaked, silky, dry; stem stout, craeked, and streaked with minute black scales, solid; gills very broad, undulated, distant, more or less anastomosing, brittle, eincreous, often marked with raised lines; edge at length black.-Sow. t. 106.

In woods. Not common. Taste bitter, umpleasant; odour not nitrous. Not an Hygrophorus, and very different from H. murinaceus, Fr.
47. A. (Tricholoma) terreus, Schaff.; inodorous; pilens fleshy, soft, at first eampanulate, dry, umbonate, elothed with innate floeeose or scaly down; stem stuffed, nearly equal, dirty white, adpresso..fibrillose; gills adnexed, with a decurrent tooth, erenulate, pale grey.-Sow. t. 76.

In woods, especially fir-woods. Common. This species varies, with white and yellowish gills. A. millus, Sow., is a form of this, or of one of the following species.
48. A. (Tricholoma) scalpturatus, $F r$.; pileus fleshy, at first subeonieal, broken up into floceose, umber or rufous seales; stem stuffed, unequal, white, fibrillose; gills emarginate, rather erowded, quite entire, white, beeoming yellowish. -A. argyraeeus, Eng. Fl. (pro parte.)

Fir plantations, borders of woods, ete.
49. A. (Tricholoma) saponaceus, Fr.; strong-seented, firm; pileus rather eompaet, at first eonvex, obtuse, dry, smooth, then rimoso-squamose or dotted; margin from the first naked; stem solid, unequal ; gills uneinato-emarginate, distant, thin, quite entire, ehanging from white to pallid, sometimes greenish.-A. argyraceus, Eng. Fl. in part ; Bull. t. 602 .

In woods. This speeies, A. scalpturatus, and A. ramentaceus, whieh latter differs in the presenee of a ring, are all ineluded in the 'English Flora' under the name of A. argyraceus. A. graveolens, Sow., must be sought for under A. gambosus.
50. A. (Tricholoma) meleagris, Sow.; pileus fleshy, thin, convex, then plane; eutiele broken up into blaek seales ; flesh turning red; stem solid, squamulose, thiekened downwards, and blaek, solid; root retieulated; gills nearly free.-Sow. t. 171.

On hotbeds. Not suffieiently known. Intermediate in eharaeters between Lepiota and Tricholoma, but apparently destitute of a veil.
51. A. (Tricholoma) cartilagineus, Bull.; eartilaginous, clastie, rather brittle; pileus fleshy, eonvex, gibbous, undulated, smooth; eutiele rimulose, fincly dotted with blaek; stem stuffed, equal, stout, lineato-striate, somewhat mealy; gills slightly emarginate, adnexed, crowded, pallid.-Bull. t. 589. f. 2.

In grassy spots. East Bergholt, Dr. Budham. Nov. 1855. Smell like that of new flour.
52. A. (Tricholoma) cuneifolius, Fr.; extremely brittle; pileus smooth at first, but soon cracked; stem hollow, attenuated downwards, pruinose above ; gills thin, erowded, white, broad in front, obliquely truneate, attenuated behind, with a decurrent tooth.-Bull. t. 580 A, B.

In pastures. Not uneommon. About one ineh across. Surface of the pileus rufous where not broken up; stem white. Smell like that of new meal.
53. A. (Tricholoma) sulfureus, Bull.; strong-seented ; pileus fleshy, unequal, subumbonate, at first slightly silky, then smooth and even; stem stuffed, nearly equal, slightly striate, sulphur-eoloured, as well as the distant gills. (Plate 4, fig. 4.) -Sow. t. 44.

In woods. Common. Smell like that of gas-tar, or Hemerocallis flava.
54. A. (Tricholoma) bufonius, P.; stroug-seented; pileus fleshy, subumbonate, at first slightly silky, then smooth, opaque, punetato-rugose; stem stuffed, nearly equal, floeeulose ; gills areuato-subdecurrent, rather distant, of a yellow-tan eolour.-Bull. t. 545. f. 2, C.

In pine-woods. Coed Coch, Mrs. Wynne. Pileus purplish, brownisl, tan-coloured, etc.
55. A. (Tricholoma) lascivus, Fr.; pileus fleshy, obtuse, somewhat depressed, at first silky, then smooth and even; stem solid, equal, stiff, rooting and tomentose at the base, white, as well as the elose areuate adnexed gills.

In woods. Canterbury. Smell like that of the two last. Pileus palc-tan ; flesh white.
56. A. (Tricholoma) inamœenus, Fr.; strong-seented; pileus fleshy, somewhat umbonate, slightly silky at first, then smooth and even; stem solid, rooting, white, as well as the very distant areuato-affixed and decurrent gills.

In woods. Not uncommon. Pileus white, with a slight tinge of ochre, often minutely cracked. Stem not always rooting. Smell like that of the last.
57. A. (Tricholoma) immundus, n.s.; cæspitose, flesly ; pileus at first convex, dirty white, stained with bistre, minutely silky; margin inflexed, silky or minutely seabrous and squamulose ; stem fibrillose, of the same colour as the pileus; gills subeinereons, with a pinkish tinge, marked with transrerse lines, emarginate.

Amongst short grass, on sheep's dung. On the top of Moelfre-uebaf, Denbighshire, Oet. 1859. Pileus 2 inehes or more aeross. Every part blackish when bruised. Border deflexed ; spores white. Fries, to whom specimens were sent, compares this with A. gangrcenosus and A. graveolens, but it seems distinet from either. The figure of A. fumosus, Pers. Ie., gives some notion of its outward appearancc.
58. A. (Tricholoma) ionides, Bull.; pileus fleshy, at first eampanulate, umbonate, even, nearly smooth, changing colour ; margin at first floceulose; stem stuffed, clastie, attenuated, fibrillose; gills erowded, emarginate, with a deeurrent tooth, thin, eroded, white, at length diseoloured.-Bull. t. 533. f. 3. A. purpureus, Bolton, t. 41.

In woods. Not found since the time of Bolton.
59. A. (Tricholoma) carneus, Bull.; pileus slightly fleshy, obtuse, even, nearly smooth, beeoming pallid; stem short, stuffed, rigid, reddish like the pileus, thiekened upwards, pruinose; gills very wide behind, rounded, erowded, white.-Bull. t. 533.f. 1 .

In pastures. Not uneommon. Pileus seldom execeding 1 inch, of a rufous pink. Stem minutely squamulose, often splitting, at length hollow.
** Moist or watery (hygrophanous). Veil, if present, fugitive, pulverulent.
60. A. (Tricholoma) gambosus, Fr.; pileus very thick and fleshy, at first eonvex, obtuse, at length undulated, moist, smooth, spotted, at length craeked; margin involute, at first floceulose, as well as the tip of the stout solid stem; gills emarginate, with a little adnexed tooth, crowded, ventricose, yellowish-whitc. (Plate 4, fig. 5.)-Sow. t. 281; Huss. i. $t .83$.

In pastures. May, June. Pileus white, or slightly tinged with oelre. Growing in rings. Eatable, and mueh approved by many. Varying eonsiderably in size. Smell strong, like that of Polyporus squamosus. Sowerby's A. graveolens is this species, as appears from his private notes. The true A. Georgii.
61. A. (Tricholoma) monstrosus, Sow.; pileus fleshy, at first eonver and umbonate, at length waved and lobed, opaque as if whitewashed; margin inflexed; stem compressed, solid, streaked, opaque white, tomentoso-squamulose above, slightly rooting; gills moderately distant, seareely rounded behind, but not truly deeurrent, eream-eoloured.-Sow. t. 283.

On the ground. Jedburgh, A. Jerdon, Esq. Near Norwich, Sow. Often densely erspitose, and then not eompressed. This eannot be A. borealis, Fr., as the pileus is always white. In Sowerby's figure it should be observed that the gills are represented as distinetly rounded. Probably eseulent.
62. A. (Tricholoma) albellus, DC.; pileus smooth, at first conieal, moist, spotted after the fashion of seales; dise eompaet, subumbonate ; margin thin; stem solid, ovato-bulbous, fibrilloso-striate ; gills erowded, entire, white, attenuated behind and adnexed, without any tooth, broader in front.Sow. t. 122.

Not found in Great Britain since the time of Sowerby, whose speeimens-whieh are connato-erspitose and convex, not eonieal-belong to the smaller variety. Eseulent. The speeifie eharaeter applies to the larger variety. Sowerby's plant is simply diseoloured when bruised.
63. A. (Tricholoma) albus, $F r$. ; pileus fleshy, at first eonvex, obtuse, smooth, even, dry ; margin at first involute, at length repand; stem firm, solid, elastie, equal, or attenuated below, smooth; gills rounded behind, fixed, thin, erowded, broad, white. (Plate 4, fig. 6.)-Bull. t. 536.

In woods. White, or shaded with yellow. Variable in size.
64. A. (Tricholoma) personatus, $P r$.; pileus at first eompaet, then soft, eonvex, obtuse, even, smooth, moist ; margin at first involute, villoso-pruinose; stem solid, blunt, somewhat bulbous, villous, stained with lilae; gills rounded behind, at length free, dirty white. (Plate 5, fig. 1.)-Huss. ii. t. 40.

In pastures. Common. Sold in Covent Garden as eatable, but has been supposed to be oeeasionally dangerous. Varying a little in eolour, but generally einereous, and sometimes eonfounded earelessly with Cortinarius violaceus. Brighteoloured speeimens are sometimes diffieult to distinguish from the next.
65. A. (Tricholoma) nudus, Bull.; pileus rather thin, obtuse, smooth, moist, changing eolour; margin inflexed, thin, naked ; stem stuffed, elastie, rather mealy; gills rounded behind, then deeurrent, erowded, narrow, violet, stained when old with reddish-brown. (Plate 4, fig. 7.)

In plantations, woorls, ete., espeeially amongst pines. Smaller than the last, and brighter-eoloured.
66. A. (Tricholoma) acerbus, Bull.; pileus flcshy, eonvex, obtuse, smooth, rather spotted; margin thin, strongly
involute, suleate; stem solid, blunt, yellowish, squamulose above; gills erowded, emarginate, pale, then rather rufous.Bull. t. $571 . f .2$.

In woods. Not common. King's Cliffe. Suffolk, Dr. Badham. Pileus 3-4 inehes aeross; white, tinged with yellow, at length stained. A very fine speeies.
67. A. (Trieholoma) einerascens, Bull.; pileus fleshy, eonvex, obtuse, smooth, even; margin thin, naked, striate; stem stuffed, clastic, nearly equal, smooth; gills erowded, rounded behind, somewhat undulated, easily separating from the pileus; white, then diseoloured.-Bull. t. 428.f. 2.

In woods. Not uneommon. Four inehes aeross, white, slightly shaded; gills at length tinged with reddish-brown or yellow; spores white. Smell unpleasant.
68. A. (Tricholoma) grammopodius, Bull.; pileus fleshy, at first eampanulate, convex, then expanded and depressed, umbonate, smooth, moist; stem stufferl, elastie, suleate, smooth, attenuated upwards; gills areuate, adnate, erowded, white.-Bull. t. 548, 585. f. 1; Huss. ii. t. 41.

In pastures, forming rings. Large, brownish-grey. Bolton's t. 40 probably belongs to this speeies.
69. A. (Tricholoma) melaleueus, P.; pileus thin, fleshy, convex, at length plane, obsoletely umbonate, smooth, moist, elianging colour; stem stuffed, thin, elastie, nearly smooth, dirty, sprinkled with a few fibrils, thiekened at the base ; gills emarginate, adnexed, ventricose, erowded, white.

On the ground. King's Cliffe, on an asparagus-bed. In my speeimens the stem is sometimes thiekened, sometimes attenuated.
70. A. (Trieholoma) humilis, Fr.; pileus fleshy, soft, umbonate, then convexo-plane or depressed, even, smooth or pulverulent, hygrophanous; margin thin, reaeling beyond the
gills; stem stuffed, pale, villoso-pulverulent; gills rounded, with a decurrent tooth, erowded, ventricose, dirty white.

On the ground, and amongst grass. This is A. blandus, Eng. Fl. The pileus is often pulverulent, and varies mueh in eolour, aeeording to its condition ; stem 2 inehes high, 2 lines thick, brown within at the base. Frequently a very pretty species, perhaps too elosely allied to A. brevipes. Klotzseh's figure, Fl. Regn. Bor. t. 374, seems just intermediate.
71. A. (Tricholoma) subpulverulentus, P.; pileus fleshy, at first convex, even, with an innate white pruinose lustre; margin inflexed; stem solid, equal, smooth, somewhat striate ; gills rounded, without any tooth, erowded, white.-Huss. ii. t. 39.

In pastures. Not uneommon. About 2 inehes aeross. Dirty white or greyish, with a white lustre.

Subgenus 5. Cuitocybe.-Stem elastic, with a fibrous outer coat; gills decurrent or acutely adnate.

* Pileus not changing colour when dry.

72. A. (Clitocybe) nebularis, Batsch; pileus fleshy, compact, obtuse, even, elouded with grey, at length naked; stem stuffed, firm, striate with little fibres; gills areuate, subdecurrent, crowded, white, beeoming pallid.-Grev. t. 9 ; Huss. ii. t. 9 .

In woods. Common. The elouded einereous pileus is charaeteristic. Pileus 3 inehes aeross; stem stout. Eisculent.
73. A. (Clitocybe) fumosus, P.; subcartilaginous, rigid ; pilcus fleshy, at first eonvex, obtuse, even, naked, turning pale ; cutiele adnate; stem stuffed, unequal, somewhat pruinose above, grey or dirty white, as are the rather erowded adnate gills.

In woods and waste ground. Not eommon. Solitary, or
densely erespitose. In the latter state it is the subspeeies A. polius. It occurred abundantly in October, 1859, at Coed Coeh.
74. A. (Clitoeybe) inornatus, Sow.; pileus flesly, plane or depressed, obtuse, even, smooth ; euticle separable; stem solid, nearly equal, smooth, firm, grey, as woll as the adnate, plane, at length decurrent, crowded gills.-Sow. t. 342.

Amongst grass. I have not met with this species. The separable cuticle indicates A. grammopodius, but the gills are not in the least arcuato-adnate.
75. A. (Clitocybe) vernieosus, $F r$. ; pileus fleshy, depresscd, obtuse, even, smooth, shining; stem stuffed, cqual, short, ycllow, as well as the aduate, slightly decurrent, rather distant gills.-Sow. $t .366$.

In fir-woods. Pilcus 3 inches across. Not found in this country since the time of Sowerby.
76. A. (Clitocybe) odorus, Bull.; dirty green, tough; pileus fleshy, at length plane, cren, smooth; stem stuffed, unequal, clastic, thickened at the base; gills adnate, moderately distant, broad, pallid.-Sow. t. 42.

In woods. Common. Easily known by its grecnish eolour and strong smell of aniseed ; stem smooth and downy. A. viridis, With. (Bolton, t. 12. n. 10), is too doubtful to insert. Greville's figure has much greater right to be eousidered the same as Bull. 176, having narrow gills. The two supposed species are probably not distinct.
77. A. (Clitocybe) cerussatus, Pr.; white; pilcus fleshy, at first convex, obtuse, even, moist, soon smooth ; stem spongy, solid, tough, elastic, naked; gills adnate, very erowded, thin, then decurrent, and unchanged in colour.-F\%. Dan. t. 1796.

In fir-woods. Not umbonate as A. opucus. Probably csculent.
78. A. (Clitocybe) phyllophilus, Fr.; white; pileus fleshy, soon depressed and umbilieate, even, d'y, marked with a white lustre round the margin ; stem stuffed, then hollow, spongy, fibrous; gills adnate, deeurrent, moderately distant, white, then yellowish.-Fl. Dan. 1847.

Amongst leaves, in woods. Distinguished from the last by its umbilieate pileus, and the gills ehanging at length to yellow.
79. A. (Clitocybe) candicans, P. ; white; pileus subearnose, at first eonvex, then plane or clepressed, even, shining, with a thin dead-white film; stem subfistulose, waxy, shining, eren; gills adnate, erowded, thin, at length deeurrent.

Amongst leaves in woods. When moist white, when dry dead-white. About 1 ineh aeross. In the nature of the stem it approaelies Omphalia.
80. A. (Clitocybe) dealbatus, P.; white; pileus rather fleshy, at first eonvex, even, smooth, rather shining; stem stuffed, fibrous, thin, equal, pruinose above; gills adnate, erowded, thin, white.-Sow. t. 123.

In fir plantations. Short, about an ineh aeross, sometimes eup-shaped, innato-prninose under a lens.
81. A. (Clitocybe) gallinaceus, Scop.; white, slightly aerid; pileus rather fleshy, eonvex, then depressed, very obtuse, even, dry, opaque; stem solid, equal, thin, even; gills subdeeurrent, erowded, thin.-Huss. i. t. 39.

In pastures. Very eommon. Distinguished from the last by its opaque pileus and strong fungoid smell. The opaeity arises from minute pubescence. About an inch aeross.Bolton, t. 4, f. 2, is very doubtful.
82. A. (Clitocybe) olixus, Sow.; pileus umbonate, at first eonvex, at length variously depressed, dingy, minutely tomentose and streaked; stem even, nearly of the same colour as the pileus; gills deeurrent, distant, white.-Sow. t. 172 .

In woods. Pileus 3 inehes aeross, very bibulous; flesh dirty-white, soft. Formerly referred by Frics to Hygrophorus caprinus.
83. A. (Clitoeybe) opaeus, With.; white; pileus flcshy, eonvex, cxpanded or depressed, umbonate, cven, covered with a floccose shining film; stem stuffed, subfibrillose, unequal, flexuous; gills adnatc, decurrent, very crowded, white.-Sow. t. 142.

In woods. Too nearly rclated to A. cerussatus. Remarkable for the silvery glaire with whieh it is elothed, whieh sometimes admits of being rubbed off.
84. A. (Clitoeybe) giganteus, Sow.; pileus thin, fleshy, splitting, elothed with minute matted down, at length squamulose, funnel-shaped; dise always depressed; stem solid, hard, blmnt, equal, even ; gills very crowded, slightly decurrent, changing from white to yellowish.-Sow. t. 244; Huss. i. $t .79$.

In woods. Forming large rings. Not very eommon. Ncarly a foot aeross.
85. A. (Clitoeybe) infundibuliformis, Schreff. ; pileus thin, flcshy, at first convex, umbonate, elothed with minute innate down, at length funnel-shaped, flaceid; stem stuffed, soft, elastie ; gills deeurrent, moderately distant, white. (Plate 5, fig. 2.)

On the sides of woods, amongst moss, ete. Extremely eommon. Pileus mostly of a pale reddish-tan, $2-3$ inehcs aeross, often retaining traees of the umbo ; its edges oecasionally plieate, at length soft.
86. A. (Clitocybe) geotrupus, Bull.; pilcus fleshy, convex, then broadly funncl-shaped, strongly umbonate, compaet, even, smooth; stem solid, eompaet, fibrillose, attenuated upwards; flesh white; gills erowded, deeurrent, unbranched,
white, at length of the same colour as the pileus.-Grev.t. 41 ; Huss. i. $t .66$.

In woods and on their borders. Not uncommon, often forming rings. Pileus whitc, tan-coloured, etc. A. subinvolutus, Batsch, is a thicker, firmer, less funncl-shaped form, with the margin generally grooved, and the surface spotted from rain or dew. It is very good when dressed, and is generally found near fir-trecs. Bolton's t. 22, with distant gills, is very doubtful.
87. A. (Clitocybe) inversus, Scop.; pilcus flcshy, brittle, convex, then funnel-shaped, smooth; margin thin, involutc; stem stuffed, thin, hollow, rather rigid, smooth; flesh pallid; gills decurrent, unbranched, pallid, at length of the same colour as the pilcus.-Sow. t. 186.

In fir-woods. Not common. Pileus 2 inches aeross, not flaceid like the next; brownish-red at first, then tan-coloured. Often crespitose. Sowerby's plant is unusually lobed.
88. A. (Clitocybe) flaccidus, Sow.; pileus thin, rather fleshy, flaceid, umbilicatc, then funnel-shaped, even; stem stuffed, uncqual, rather flexuous, villous at the base; gills dccurrent, crowded, arched, ycllowish.-Sow. t. 185.

In fir-woods. Not uncommon. Often denscly crespitosc, and very handsomc. Pilcus bright in colour, sometimes streaked, flaccid when young.

** Pileus hygrophanous.

89. A. (Clitocybe) cyathiformis, Fr.; pilcus thin, dcpressed, then fumel-shaperl, cven, nearly smooth, moist, hygrophanous; margin even, for a long time involute; stem stuffcl, elastic, attenuated upwards, fibrillose, more or less reticulated; gills adnate, then dceurrent, joined behind, dingy. -Sow. t. 363 ; Huss. ii. ℓ. 1.

In meadows, ete. Very eommon late in the year. Pileus 2 inches across, variable in colour, as are the gills, generally of a dark brown or bistre.
90. A. (Clitoeybe) brumalis, Fr.; inodorous; pileus rather' fleshy, thin towards the margin, umbilieate, funnel-shaped, smooth, flaeeid, hygrophanous; margin reflexed, even; stem equal, somewhat ineurved, smooth, dirty white ; gills distinet, decurrent, pallid.-Bull. t. 248 A, B.

In woods. Canterbury. This is A. metachrous, Engl. Fl., whose eharaeters agree rather with Bulliard's figure quoted above than with Fries's eharaeter. Livid grey when moist, nearly white when dry.
91. A. (Clitocybe) metachrous, Fr.; inodorous; pileus somewhat fleshy, convex, then plane and depressed, hygrophanous; stem stuffed, then hollow, equal, tough, pruinose above ; gills adhate, erowded, pale, einereous.

In woods amongst leaves. King's Cliffe. Pileus $1 \frac{1}{2}-2$ inches aeross; gills not truly decurrent.
9.2. A. (Clitoeybe) fragrans, Sow.; sweet-seented ; pileus rather fleshy, convex, then plane or depressed, lyygrophanous; stem stuffed, then hollow, elastie, smooth ; gills rather erowded, subdecurrent, distinct, dirty white.-Sow. t. 10 .

In woods. Common. Known by its sweet, anise-seent, which resembles that of A. odorus. Pileus $1 \frac{1}{2}$ inch aeross, oehraceous, white.
93. A. (Clitocybe) difformis, P.; pileus submembranaeeous, eonvex, then plane, subumbilieate, smooth, hygrophanous, striate when moist, even when dry, at length subsquamulosorimose; stem hollow, equal, smooth, shining ; gills adnate, distant, dirty white.-Boll. t. 17 (dry state).

In fir plantations. Near Halifax. Livid when moist.
94. A. (Clitoeybe) eetypus, Fr. ; pilens rather flesliy, flat-
tened out, at length depressed and revolute, hygrophanons, finely streaked with little close-pressed sooty fibres; margin slightly striate; stem rather hollow, clastic, fibrillose; gills adnate, rather distant, becoming pallid, at length stained with red.

In meadows. Mossburnford, near Jedburgh, A. Jerdon, Esq. Pileus honcy-colourcd; gills mealy with the sporcs. Specimens sent from Scotland exactly accord with a figure forwarded to me by Frics.
95. A. (Clitoeybe) bellus, P.; pileus rather fleshy, convex, then depressed, dull-orange, sprinkled with minute darker scales ; stem stuffed, equal, tough, rivulose, dull ycllow, as well as the rather distant adnate gills, which are connected by vcins, at length reddish-brown.

In fir plantations. East Morden, Dorsetshire. Pileus 2 $\frac{1}{2}$ inches broad, decp orange-brown, bccoming gradually palc. Gills incarnato-ferruginous. Stem $2 \frac{1}{2}$ inches high. Fries's plant has dirty-yellow gills, and so far differs from mine. It is at once distinguished from A. laccatus by its fetid smell.
95. A. (Clitoeybe) laeeatus, Scop.; pilcus eonvex, then mostly umbilicatc, variable in form, hygrophanous, mcaly, subsquamulose; stem stuffed, equal, tough, fibrous, brightcoloured, as well as the thick, broad, distant gills. (Plate 5, fig. 3.)-Grev. t. 249 ; Huss. i. $t .47$.

In woods, ctc. Extremely common. Varying much in sizc, colour, ctc. Sometimes of a bright ametliyst-bluc, more frequently of a reddish-brown or grey (Sow. t. 187), sometimes yellowish. Spores globose: a very uneommon character amongst Agarics. Bolton, t. 4.1, f. A, is at present doubtful, but its peculiar habitat, on the perpendicular sides of turfpits, must some day make it casy to recognizc.

Subgenus 6. Collifba.-Stem cartilaginous cxternally. Margin of pileus at first involute. Gills not decurrent.

* Gills white, or of a pure colour.

97. A. (Collybia) radicatus, Relh. ; pileus thin, fleshy, obtuse, at length plane, wrinkled, glutinous ; stem tall, atteuuated upwards, rooting; gills adnexed, distant, white. (Plate 5, fig. 4.) -Huss. i. t. 15.

On old stumps, or on stieks eovered with soil. Very eommon. The long tap-root, wrinkled pileus, and distant white gills, at onee distinguish this speeies. Pileus 3-4 inehes aeross; stem 6 ineles high. I once gathered a white variety of this, with the pilcus searecly an inch aeross, though perfeetly developed. The colour is generally greyish-brown.
98. A. (Collybia) longipes, Bull.; pileus thin, fleshy, eonieal, then expanded, umbonate, dry, slightly velvety; stem attenuated upwards, rooting, velvety; gills distant, rounded belind, white.-Bull. t. 232 ; Huss. i. t. 80.

In the same sitnations as the last, but not so eommon. When well grown, one of the most beautiful of our Agaries. Pileus and stem often tinted with yellow.
99. A. (Collybia) platyphyllus, $F r$.; pileus thin towards the margin, expanded, obtuse, moist, streaked with little fibres ; stem stuffed, equal, soft, striate, naked, pallid, euding abruptly; gills distant, truneate belind, adnexed, white.Bull. t. 594.

In woods, amongst leaves. Rare. King's Cliffe. Pileus several inches aeross, umber or brownish. The form with a stout, ereeping, string-like myeelium, named A. repens by Fries, has been found by Mr. Broome in the sonth of England, and by myself in Denbighshire. Stem not so distinetly eartilaginous as in other Collybice.
100. A. (Collybia) fusipes, Bull.; pilcus flcshy, convex, smooth, at first even, then frequently eracked; stem more or less twisted and split, swollen, sulcatc, rooting below, and spindle-shaped; gills adnexed, nearly frec, at length separating behind, connected by veins, white, then nearly of the same colour as the pilcus. (Plate 5, fig. 5.)-Huss. ii. t. 48.

On stumps. Very common. Pileus 3 inches across. Often densely cespitose, more or less rufous. Gills often spotted. Very variable in size and form. An carly specics. A. oedematopus, as far as the English Flora is concerned, rests upon an imperfect plant of Dickson. If distinct, the decurrent gills must be the principal character, in which ease it could not be a Collybia. This circumstance may, however, arise from some peculiar condition of the pileus.
101. A. (Collybia) maeulatus, A. and S.; pileus fleshy, compret, convex, then planc, obtuse, even, smooth; stem stout, ventricose, striate, attenuated bclow, white, as well as the free gills.-Sow. $t .246$; Huss. ii. $t .60$.

In fir-woods. Not common. Pileus $2-3$ inehes across, at first white, then, like the stem, spotted with reddish-brown.
102. A. (Collybia) butyraeeus, Bull.; pileus flcshy, convex, at length expanded, moist, clanging colour; flesh turning white; stem slightly stufficd, extcrnally cartilaginous, conical, striate, reddish brown; gills nearly frec, crowded, crenulate, white.-Bull. t. 572.

In woods, especially fir-woods. Extremcly common. Easily distinguished by its greasy-looking pileus and cartilaginous stem. The pileus is at first dark-bay, but as it dies exhibits various pallid tints. Stem often compressed. A. compressus, Sow. t. 66, is very doubtful, but I belicve it to be Hygrophorus ovinus. A. concinnus, Bolt. t. 15, is deseribed as clothed with a viseid slippery fluid, and therefore eannot
be A. pullus, to which Fries refcers it. It is probably Hygrophorus unguinosus.
103. A. (Collybia) velutipes, Curt.; pileus thin, fleshy, eonvex, then plane, obtuse, smooth, viscid; stem stuffed, velvety, looting, dark-bay; gills adnexed, distant, yellowish.Fll. Lond. t. 70 ; Huss. i. t. 56.

On logs and trunks of trees. Extremely common during the greater part of the year, and even resisting considerable frost. Onc of our most beantiful specics, from its tawny pileus and dark velvety stem. Often densely tufted.
104. A. (Collybia) stipitarius, F. ; small; pilcus thin, umbilicate, plane, clothed with little velvet-like scales; stem at length fistulose, bright brown, more or less laiary ; gills scparating, at length free, ventricose, rather distant, white. (Plate 5, fig. 6.) -Huss. i. t. 68.

On grass, old thatch, twigs, etc. A very pretty little species, with the habit of a Marasmius, but the gills of an Agaric. Pileus clothed with tawny or hrown hairs or fibres, which sometimes form scales.
105. A. (Collybia) confluens, P.; pilcus slightly fleshy, convex, at length expanded, obtusc, flaccid, smooth, hygrophanous; stem fistulose, somewhat compressed, rufous, clothecl with white pulverulent down; gills free, remote, lincar, very crowded, dirty-white--Pers. Ic. Pict. t. 5.f. 1.

A mongst leaves, in woods, forming rings or conflucnt masses. Common. Pileus about an inch across, reddisli-brown. Gills leaving a distinct area round the top of the stem. Stems adhering to each other.
106. A. (Collybia) ingratus, Schum.; pilcus slightly fleshy, at first globose, then campanulate, convex, umbonate, cren ; stem fistulose, long, twisted, somewhat compressed, between pulverulent and downy, especially above, umber below; gills free, lincar, very crowded, pale.

Var. pileus eonvex, obtuse; stem villoso-pulverulent.

In woods. Differs prineipally from the foregoing in the gills not leaving a free space round the top of the stem. My speeies agrees more elosely with the figure in the Stoekholm collection than with Fries's eharaeter, as the whole stem is more or less pulverulent. The pileus, moreover, is not so truly campanulate. I lave set it down, therefore, as a variety.
107. A. (Collybia) undatus, Berk.; pileus tough, thin, radiato-rugose, minutely pulverulent, eampanulate, then convex, at length plane; stem minutely velvety, strigose at the base, fistulose; gills aduate, white, with a yellowish tinge, couneeted with veins.

On dead fern-roots. Northamptonshire. Pileus not exceeding an inch aeross, dull brown or einereous. Gills moderately distant.
108. A. (Collybia) conigenus, P.; pileus slightly fleshy, nearly plane, unequal, somewhat umbonate, smooth; stem minutely fistulose, tough, pulverulent, beeoming pallid; root strigose ; gills free, linear, very erowded, pallid.

On fir-eones. Not very uneommon. Pileus about 1 inel aeross, reddish-brown at first, pallid when dry; gills white at first. This must not be confounded with A. tenacellus.
109. A. (Collybia) cirrhatus, Scleum.; white ; pileus slightly fleshy, plane, minutely silky, at length umbilieate; stem slightly fistulose, flexuose, cqual, pallid, pulverulent; root twisted, fibrillose; gills adnate, crowded, narrow.

Amongst leaves, ete.; often attached to a little, yellowish, nodular Sclerotium. Very nearly allied to the next.
110. A. (Collybia) tuberosus, Bull.; white, slightly fleshy, convex, then expanded, umbonate, even, shining with a silky lustre; stem slightly fistulose, obsoletely pulveruleut; root
tuberiform, smooth, shining, eliestnut-brown; gills adnate, erowded, thin.-Grev. t. 23.

On dead Russulce, and on the ground, probably where Fungi have deeayed. The dark tuberiform base easily distinguishes this speeies.
111. A. (Collybia) racemosus, P.; pileus conver, grey; stem grey, sprinkled with raeemose abortive pilei; gills adnate, erowded, white.-Sow. t. 287.

On the ground. Extremely rare. It has oceurred onee or twiee at King's Cliffe. I am eonvineed now that it is not a mere form of the last, as it turns black in drying.
112. A. (Collybia) xanthopus, Fr.; pileus slightly fleshy, convex, then expanded, somewhat umbonate, smooth, dull yellow, aud even, as well as the fistulose, equal stem; base equal, rooting, strigose ; gills truneate behind and free, broad, thin, loose, erowded, dirty-white.

About the stumps of trees, furze-bushes, ete. Not uneommon. Very near to A. dryophitus.
113. A. (Collybia) esculentus, Jucq.; pilens slightly flesliy, nearly plane, obtuse, quite smooth, elay-eoloured, as well as the obsoletely fistulose, equal, straight, tough, rooting stem; gills adnate, loose, whitish.-Bull. t. 422. f. 2.

In pastures, in spring. Common in Seotland, in fir plantations. Varies with a dark and light pileus, about an inch aeross. Eatable, but not much esteemed, on aeeount of its bitter flavour. It is ealled at Viemna, where large baskets appear in the market in spring, Nagclschwämme, or NailMushroom.*
114. A. (Collybia) tenacellus, P.; pilens slightly fleshy, nearly plane, somewhat umbonate, even, smooth; stem ob-

[^27]scurely fistulose, tough, naked, tawny; root strigose; gills emarginate, broad, loose, rather distant, snow-white.-Sow. t. 206.

On fir-cones. Not uneommon. Pileus about an inch aeross, tinged with brown ; stem tawny below, white above. Easily known by its broad, emarginate gills.
115. A. (Collybia) acervatus, Fr.; cæspitose; pileus eonvex, expanded, at length umbonate, smooth, hygrophanous; margin slightly striate; stem fistulose, smooth, deep redbrown, rooting and tomentose at the base; gills free, erowded.

At the base of old fir-stems. Not uneommon. In the British plant the inner walls of the fistulose stem are strigose. Resembling the next. Pileus at first reddish.
116. A. (Collybia) dryophilus, Bull.; pileus rather fleshy, nearly plane, obtuse, somewhat depressed, even, turning pale ; stem fistulose, smooth, reddish-brown or yellowish; gills sinuated, adnexed (at length with a deeurrent tooth), nearly free, erowded, narrow, white, or pallid.-Sow. t. 127 ; Huss. i. t. 39 .

Amongst leaves, in woods. Extrernely eommon, but variable in eolour, form, ete. Pileus $1-2$ inehes aeross.
117. A. (Collybia) exsculptus, Fr .; pileus slightly fleshy, tough; eonvex, then expanded, umbilieate, not ehanging eolour, smooth, as well as the fistulose, thin, eurved, short stem; gills nearly free, with a decurrent tooth, arehed, mueh erowded, narrow, sulphur-eoloured.

On deeayed oak. Suffolk, Dr. Baतlham, from whom I have specimens. Size that of the last.
118. A. (Collybia) clavus, Bull.; pileus slightly fleshy, nearly plane, obtuse, even; stem stuffed, thin, smooth, straight, white, as well as the free erowded gills, which separate slightly at the base,-Bull. t. $148 \mathrm{~A}-\mathrm{C}, 569 \mathrm{~F}$.

On twigs, leaves, ete. This is a minute speeies, differing from A. acicula in its white stem and gills, but agreeing somewhat in the orange-red pileus. It is introduced on the faith of Bolton's figure and deseription, t. 39 B , whieh, however, may possibly be A. acicula. I have not met with it myself.* The 'Engrish Flora' plant is A. acicula.
119. A. (Collybia) ocellatus, Fr.; pileus slightly fleshy, nearly plane, even; dise depressed, darker, umbonate ; stem minutcly fistulose, filiform, smooth, brownish-white, rooting and fibrillose at the base; gills erowded, white, adnexed, at length separating.--Bull. t. 569.f. 1 H-P.

On the ground, amongst leaves. Not common. Kinnordy, Klotzsch.

> ** Gills at length cinereous.
120. A. (Collybia) laceratus, Lasch; pileus between fleshy and membranaecous, eampanulate, rather blunt, moist, streaked with brown ; stem stuffed, then hollow, firm, twisted, fibroso-striate, floeeoso-pruinose above, at length eompressed; gills distant, adnexed, broad, thiek, greyish-white.

In pine-woods. Bristol, Dr. H. O. Stephens. Pileus dingy, pallid when dry, $1 \frac{1}{2}$ ineh aeross. Allied to A. platyphyllus.
121. A. (Collybia) atratus, Fr.; pileus slightly fleshy, plano-depressed, umbilieate, very even, smooth, shining; margin convex ; stem stuffed, short, even, smooth, brown without and within; gills adnate, rather broad, dirty-white.

On burnt soil, in woods. King's Cliffe. Pileus 1 ineh across, dark brown at first. Stem 1 ineh high, $1-2$ lines thick. I have a figure of this from the Swedish Muscum, which represents the stem as nearly white.

[^28]Subgenus 7. Mycena.-Stem externally cartilaginous. Margin of pileus (which is mostly campanulate) at first straight and pressed to the stem.

* ILargin of gills different in colour from their surface.

122. A. (Mycena) pelianthinus, Fr.; pilcus somewhat fleshy, convex, nearly planc, moist, hygrophanous; margin striate; stem firm, fibrilloso-striate; gills emarginate, adnexed, beautifully connected by veins, edge darkcr, somewhat toothed. (Platc 6, fig. 1.)

Amongst dead leaves, in woods. Not very common. Pileus at first lilac or rose-coloured, $1 \frac{1}{2}-2$ inches across; gills purplish, with a darker toothed edge, a character which at once distinguishes it from A. purus.
123. A. (Mycena) balaninus, B.; pileus somewhat fleshy, convex, umbonate, dry, minutely pulverulent, striate when moist ; stem rooting, villous and dark below, white and pruinose above; gills connected by veins, palc, with a purple cdge.-May. of Zool. and Bot. i. t. 15. f. 2.

Amongst oak-lcaves, beech-mast, ctc. Rarc. King's Cliffc. An exquisite species. Stem bright brown below, spongy at the basc. Gills sprinkled with purple spicules. Pilcus ocliraceous, 1 inch or more across.
124. A. (Mycena) elegans, P.; pileus submembranaccous, campanulate, striate, umbonate; stem even, equal, rigid, tomentose at the base, floccoso-fibrillose ; gills linear, aduate, dirty-white; cdge yellow, entire.

In woods. Not uneommon. Pilcus half an inch or more across, greyish or livid-ycllow. I have given Fries's character, but find the gills rather broad, though searecly ventricose. The dark tint is often confined to the part nearest the pilcus.
125. A. (Myeena) rubro-marginatus, Fr.; pileus submembranaecous, eampanulate, obtuse, striate, hygrophanous; stem rigid, even, juieeless; gills adnate, distant, dirty-white, edged with purple or purple-brown.

On pine-stumps. Nassington, Northamptonshire. Nov. 1859. A small speeies, resembling somewhat A. sanguinolentus, but clistinguished at onee by the absence of red juice in the stem.
126. A. (Myeena) strobilinus, Sow.; searlet ; pileus slightly fleshy, bell-shaped; umbo aeute, even ; margin striate ; stem stiff, juieeless, even, elothed at the base with white strigose hairs ; gills adnate, edge dark blood-colour.-Sow. t. 197.

On fir-cones. Rare.
127. A. (Mycena) rosellus, Fr.; rose-eoloured ; pileus membranaecous, hemispherieal, obtuse, umbonate, striate; stem slender, soft, juiceless, elothed with white fibrillose hairs at the base; gills adnate, edge darker.

Amongst fir-leaves. Rare. West of England, C. E. Broome. An extremely pretty little species.
** Stem not dilated into a disc at the base; gills self-coloured.
128. A. (Mycena) purus, P.; strong-seented; pileus slightly fleshy, bell-slaped, then expanded, obtusely umbonate, smooth, turning pallid; margin striate; stem rigid, even, nearly naked, villous at the base ; gills very broad, widely sinuated, adnexed, eonnected by veins, paler than the pileus.-Huss. ii. t. 49.

Amongst leaves, in woods. Extremely common. Known at onee by its strong scent and pretty eolour, which changes as the pileus becomes dry. A. pelianthinus, which it somewhat resembles, is distinguished by the diseoloured edge of the gills, and other eharaeters.
129. A. (Mycena) Iris, Berk.; pilcus hemispherical, obtuse, striate, subviscid, adorned with bluc fibrillæ; stem fasciculate, pilose ; gills almost frce. (Platc 6, fig. 3.)

On fir-stumps. Rare. Clifton, Notts. The little fibrils glued down to the cuticle are very characteristic. When the stem is cxtremely elongated, it is sometimes nearly smooth.
130. A. (Myeena) Adonis, Bull.; pilcus membranaccous, conico-campanulate, smooth, nearly cven ; stem slender, cven, smooth; gills uncinate, adncxed, lincar, narrow, whitc, or tinged with rose-eolour.-Bull. t. 560.f. 2.

In woods. Rare. Kirriemuir, Klotzsch. King's Cliffe. White, ycllowish, orangc, or green.
131. A. (Mycena) luteo-albus, Bolt.; pileus membranaceous, bcll-shaped, umbonatc, slightly striatc, dry, ycllowish, as well as the smooth shining stem; gills adnatc, somewhat uncinate, broạd, white.-Bolt. t. 38. f. 2 .

Amongst moss, in woods. Rarc. Halifax.
132. A. (Myeena) laeteus, P. ; pilcus membranaccous, bellshaped or convex, subumbonate, striate when moist, even when dry; stem cqual, filiform, rather tough, flexiblc, smooth; gills adnate, ascending, narrow, milk-whitc.-Bull. t. 563 N, O.

In fir-woods, attached to the leaves, or on the naked soil. Often very abundant. Milk-white, or sometimes yellowish in in the eentre.
> **** Stcm firm, rigid; gills changing colour; pilcus not lyygrophanous.
133. A. (Myeena) proliforus, Sow.; pilcus rather fleshy, broadly bell-slaped, dry, darker in the centre; margin at lengtl sulcatc; stem firm, rigid, smooth, shiniug, minutcly striate, rooting ; gills adnexel, more or less distinct, at lengtl pallid.-Sow. t. 169.

On soil, in gardens, near wood. Not common. Densely erespitose. Stem frequently prolifcrous, as in some species of Coprinus. Inodorous.
131. A. (Mycena) galericulatus, Scop.; pilcus submembranaeeous, between eonieal and bell-shaped, then expanded, striate as far as the umbo, dry, smooth; stem rigid, polished, even, smooth, rooting at the base; gills adnate, with a decurrent tooth, connceted by veins, dirty-white or flesh-coloured.

On trunks of trees. Extremely common. Often densely erespitose, but sometimes scattered. Variable in colour, and sometimes stained with the ulmates and humates of the decaying wood. Inodorous and tasteless.
135. A. (Mycena) polygrammus, Bull.; pileus submembranaccous, eonieo-eampanulate, somewhat umbonate, dry, striate; stem rigid, shining, deeply and eontinuously suleatostriate; gills attenuated behind.-Sow. t. 222.

On trunks of trecs. Common. Easily distinguished by its shining, silvery, grooved stem.
136. A. (Mycena) parabolicus, A. and S.; pilcus submembranaecous, at first oval, then parabolie, obtuse, diseoid, turning palc, striate halfiray; margin entirc, turning white; stem rigid, even, smooth, of the same colour as the pileus, strigose at the base, swollen, abrupt, rooting ; gills adnate, ascending, nearly distinct, whitish.-Sow. t. 165.

On trunks, especially of fir. Pilcus dark in the eentre, then of a livid-bluc, then whitish. Sowerby's plant is on willow-stumps.
**** Stem brithle ; gill.s changing colour. Strong-scented.
137. A. (Mycena) atro-albus, Bolt.; rather firm; pileus somewhat flcsly, obtusely bell-shaped, even, smooth, opaque, brown, whitish and striate towards the margin; stem straight,
shining, two-eoloured; root hairy, bulbous; gills attenuated, nearly free, ventrieose, white.-Bolt. t. 137.

Amongst moss, about the roots of trees. Not common.
138. A. (Mycena) dissiliens, Fr.; very brittle ; pileus submembranaecous, eonieo-eampanulate, obtuse, lineato-plieate halfway up; stem attenuated, somewhat ineurved, finely striate, einereous, dark, strigose at the base; gills rounded, seeeding, at length free, broad, soft, dirty-white, grey at the base.-Bolt. t. 154.

On trunks of trees. About Halifax. The speeies takes its name from the stem, when eompressed, breaking up into revolute laciniæ. Strong-scented.
139. A. (Mycena) alcalinus, Fr.; rigid, but brittle, strongseented; pileus submembranaecous, bell-shaped, obtuse, naked, deeply striate, moist, shining when dry; stem smooth, slightly stieky, shining, villous at the base ; gills adnate, rather distinet, white, at length tinged with blue.

On trunks of trees. Common. Easily distinguished by its strong nitrous seent, like that of fermented walnuts. Ofteu tinged everywhere with yellow or pink. Solitary or eæspitose.
140. A. (Mycena) pauperculus, Berk.; strong-seented ; pileus obtusely eonieal or hemispherieal, minutely imato-fibrillose, submembranaeeous; stem smooth, rooting, villous at the base; gills at first free, then adnexed, white.

Inside of deeayed stumps. Not eommon. Minute, oehra-ecous-white, at length stained from the wood. Odour farinaceous. Gills adnexed, from the growth of the pileus, whieh is sometines striate from transluecnee. This, perliaps, would be better plaeed before No. 137.
141. A. (Mycena) tenuis, Bolt.; very brittle; pileus membranaeeous, bell-slaped, eonvex, obtuse, lineato-striate; margin erenate, appendieulate ; stem straight, pellucid, membra-
naeeous ; gills adnate, distant, distinet, thin, watery, dirty-white.-Bolt.t. 37 .

In shady, moist woods. Rare. Halifax. Almost as delieate as Bolbitius titubans. Stem quite membranaeeous.
142. A. (Myeena) tenellus, Schum.; tufted; pileus membranaeeous, bell-shaped, eonvex, obtuse, pellueid, margin slightly striate; stem slender, soft, smooth, villous at the base ; gills uneinate, very thin, erowded, white or flesh-eo-loured.-Raii Syn.t. 1.f.2.

On deeayed trees. This species has not been found in England since the time of Ray, and it is very rare on the Continent. It is either entirely white, or tinged with roseeolour.
> ***** Stcm filiform, flaccid; gills distinct, changing colour. Not caspitose.
143. A. (Mycena) filopes, Bull.; pileus membranaeeous, obtuscly campanulate, expanded, striate; stem filiform, flaeeid, rather brittle, smooth, pilose at the base, rooting; gills free, lanecolate, erowded, white.-Bull. t. 320.

In woods, among leaves. Not uncommon. Pilcus lividbrown or umber, tinged with pink. Gills sometimes adncxed. Odour not nitrous.
144. A. (Mycena) vitilis, Fr.; pileus membranaeeous, eonieal, then expanded, moist, deeply striate, growing pallid; stem straight, filiform, flexible, smooth, juieeless, shining, rooting; gills atteuuato-adnate, rather distant, greyish-white. -Sow. t. 385.f. 5.

Amongst leaves, ete. Not uneommon. The gills vary a good deal in colour, and are sometimes very dark.
145. A. (Mycena) speireus, lir.; pileus membranaeeous, eonieal, then convex, unpolished, striate; dise darker, at
length depressed ; stem filiform, tough, shining, fibrillose at the base ; gills horizontal, then deeurrent, distant, white.

On mossy trunks.
146. A. (Myeena) aeieula, Scheeff.; pileus membranaeeous, bell-shaped, eonvex, smooth, searlet; margin striate; stem thread-shaped, rooting, tough, shining, yellow, as well as the rounded, adnexed, ventricose, distant gills.

On leaves, twigs, ete., in woods. Not uneommon. A very delieate and pretty little speeies. Stem pruinose above. The gills are sometimes white, sometimes yellow, with a whitish edge.
****** Gills and stem milky, or containing coloured fluid.
147. A. (Myeena) eruentus, Fr.; pileus submembranaeeous, conico-eampanulate, striate ; margin quite entire; stem straight, smooth, villous at the base, and rooting, yielding a dull-red juiee ; gills dirty-white.-Sow. t. 385.f. 2, 3.

In pine-groves. Not observed in this country sinee the time of Sowerby.
148. A. (Myeena) sanguinolentus, A. and S.; vinous-red; pileus membranaccous, obtusely eampanulate, striate ; stem containing red juice; gills adnate, cdge darker.

Amongst leaves, in woods. Not uneommon. The vinousred eolour of the dark margin of the gills, and the dark juiee, readily distinguish this speeies.
149. A. (Myeena) eroeatus, Schrad.; pileus submembranaeeous, expanded, slightly striate; stem tall, attenuated, with a villous rooting base, filled with saffrou-eoloured juiee; gills adnexed, attenuated behind, ventrieose in front.

Amongst leaves. West of England, Mr. Knapp. Figured in the sceond edition of the 'Journal of a Naturalist.'
150. A. (Myeena) ehelidonius, Fr.; pileus membranaeeous, eampanulato-convex, nearly even ; stem even, smooth,
rooting, compressed, filled with yellow juice; gills aduate, dirty-white, at length yellowish.-Sow. t. 385.f. 4.

On stumps of beeeh. This also depends upon Sowerby's figure. No one else seems to have observed it. The yellowish gills and pileus are distinetive.
151. A. (Mycena) galopus, Schrad.; pileus membranaecous, campanulate, somewhat striate; stem slender, fibrillose and rooting below, filled with white milk; gills attenuated behind, white, then glaueous. (Plate 6, fig. 2.)

Amongst leaves, under trees. Generally diffused, but seldom abundant. Pilcus brownish or cinercous, sometimes white. When withered, the white milk is oeeasionally wanting.
******** Stem distinctly glutinous, not millky.
152. A. (Mycena) epipterygius, Scop.; pilens membranaccous, campanulate, expanded, covered with a viscid separable skin; stem elongated, tough, rooting, viseid, yellowish; gills adnate, with a deeurrent tooth.-Sow. t. 92.

Amongst fern-leaves, ete., in woods. Extremely common. Very variable in colour, but always easily recognized.
153. A. (Mycena) pelliculosus, Fr.; pileus membranaceous, campanulate, obtuse, deeply striate; dise at length depressed ; stem tough, viseid, dirty-white; gills adnate, white.

On heaths. Mossburnford, A.Jerdon, Esq. October, 1858. Cinereous. Resembling A. galericulatus rather than the last.
154. A. (Mycena) vulgaris, P.; pilcus eonvex, then depressed, viscid; stem tough, rooting, fibrillose at the base, einereous; gills decurrent, thin, white. (Plate 6, fig. 4.)

On plantations, especially of larch. Sometimes very abumdant. The viscid einereous pileus, tough stem, and decurrent gills, readily iudicate this speeies.
155. A. (Mycena) roridus, F; very delieate; pilcus at
length depressed, suleate, dry; stem dripping with gluten; gills decurrent, rather distant, white.

On dead bramble-twigs, ete. Not eommon. Nottinghamshire. Springing at onee from the twig. Various in eolour, but generally white, with a slight cinereous tinge. After abundant rain the dripping stem is very striking.
********* Stem dry, dilated at the base into a little disc.
156. A. (Mycena) stylobates, P.; pileus obtuse, eampanulate or eonvex, striate, slightly pilose; stem smooth, dilated into a radiato-striate villous dise; gills free, distinet, ventricose. (Plate 6, fig. 5.)

On fern, twigs, ete. Not common. Generally pure white. Pileus 2 lines aeross. Very delieate.
157. A. (Mycena) tenerrimus, B.; white, very delieate; pileus convex, pruinose; stem pilose, adhering by a minute, pubeseent dise; gills free, ventricose. (Plate 6, fig. 6.)

On fir-eones, stieks, ete. Smaller than the last. Pileus frosted with minute granules; dise not striate. The affinities of A. pilipes, Sow., are so doubtful, that it is omitted.
158. A. (Mycena) pterigenus, Fr .; very delieate, rosecoloured ; pileus eampanulate, obtuse, striate, smooth, as well as the thread-like stem, whiel springs from a little strigose bulb; gills few, broad, arlnate, entire. (Plate 6, fig. 7.)

On dead fern-stems. Rare. A minute, but most elegant Agaric. The edge of the gills is often of a deeper tint than the dise. The normal form is found also on dead leaves. A variety of this oceurred at Canterbury on oak-leaves, with a lemoncoloured stem and more erowded gills. See 'English Flora.'
********* Stem very slender, dry, growing on other plants without any root; gills adnate, with a decurrent tooth.
159. A. (Mycena) corticola, Schum.; pileus thin, hemi-
spherical, at length obsoletcly umbilicate, suleato-striate ; stem slightly scurfy ; gills broadly adnate, broad, somewhat ovatc, paler.

Amongst moss, on bark. Extremely common. Very variable in colour, white, lilac, cinereous, cte. Withering when dry, but often reviving when moistencd.
160. A. (Mycena) setosus, Sow. ; very delicate; pilcus hemispherical, smooth; stem thread-like, covered with spreading hairs; gills distant, white.-Sow. t. 302.

On dead leaves, in woods. Nearly allicd to the next.
161. A. (Mycena) capillaris, Schum.; very delieate; pileus campanulate, at length umbilicate, smooth; stem threadlike, smooth ; gills adnate, ascending, distant.

On dead leaves, in woods, Not uncommon. Slightly tinged with eincreous. So delicate as to be transported with diffieulty. Stem often much elongated.
162. A. (Mycena) juncicola, Fr.; very delicate; pileus convex, sometimes minutely umbonate, at length slightly depressed, even, red, striate; stem of the same colour, smooth; gills adnate, distant, white.

On dead rushes, in bogs. Rare. Resembling the forcign Marasmius hematoceplatus. Pileus in my specimens of a decp blood-red, inclining to tawny. Gills few, yellowishwhite. Stem brown, paler above, smooth.

Subgenus 8. Orphatia.-Stem cartilaginous. Gills truly decurrent.

* Gills moderately distant, rather narrow; margin at first incurved.

163. A. (Omphalia) pyxidatus, Bull.; pileus submembranaccous, at first umbilicate, then infundibuliform, hygrophanous ; margin striate ; stem stuffed, at length fistulose, eren ;
gills decurrent, rather distant, narrow, reddish-grey. (Plate 6, fig. 8.)

Amongst short grass on lawns, etc. Not uncommon. When moist of a deep red-grey. Gills at first flesh-coloured. A small species.
164. A. (Omphalia) hepaticus, Batsch ; tough, rigid; pileus smootli, rather shining, even ; stem at length compresscd, flesh-colourcd, inclining to rufous; gills distant, connected by veins and forked, rather thick, pallid.-Batsch, f. 211.

On lawns. Coed Coch, Denbighshire. Of the same colour' as the last, but rather different in habit, and approaching A. umbelliferus.
165. A. (Omphalia) sphagnicola, B. ; tough ; pileus infundibuliform, subcarnose, minutely squamulose, moist; stcm fistulose ; gills narrow, dirty-ochraceous.

On Sphagnum acutifolium. Chartley Moss, Staffordshire. Pileus $1-1 \frac{1}{2}$ inch across, of a dirty pale-ochre, obseurely striate ; gills thick; edge flattish. Stem at first minutely squamulose above, distinguished from A. Philonotis by its tougl, elastie substance, and other points.
166. A. (Omphalia) Oniscus, $F r$.; pileus sulbmembranaceous, eonvex, plano-depressed, remotely radiato-striate ; smooth, hygrophanous, smooth when dry; stem subfistulose, firm, equal, livid or dirty-white, as well as the adnate, decurrent, straight, somewhat distant gills.-Bolt. t. 41.

In swamps. Not observed since the time of Bolton.
** Gills very distant, broad, and gonerally thicli; margin at first incurved.
167. A. (Omphalia) muralis, Sow. ; pileus sulmembranaceous, umbilicate, radiato-striate, smooth; brownish-rufous, as well as the short tough stem ; margin crenulate; gills deeurrent, distant, paler.-S'ow. t. 322.

On old walls, amongst moss. Not uncommon.
168. A. (Omphalia) umbelliferus, L. ; pilcus membranaceous, convexo-plane, obconic, brittle, radiato-striate, when dry pallid, cven, slightly silky; margin at first inflexed, crenate; stem cqual, downy at the base; gills decurrent, thick, and very distant, extremcly broad bchind.

In swamps, exposed pastures, etc. Very common. Varying extremcly in colour. A yellow variety, inclining to orange when growing on high monntains, is generally diffused in alpine countries, and is very beautiful. Pileus $2-10$ lines across.
169. A. (Omphalia) Helvelloides, Bull.; pileus obconic, umbonate, at length deprcssed, somewhat funnel-shaped, remotely radiato-sulcate ; stcm clongated; gills thick, forked, decurrent, broad in front.-Bull. t. 601. f. 3.

On the ground. Navigation House, Monmouthshire. Oct. 27, 1847, C. E. Broome. Far more delicate and graccful than any form of A. umbelliferus. Fries considers this the same with his A. setipes.
170. A. (Omphalia) rufulus, Berk. and $B r$.; pilens umbilicatc, reddish-grey, growing pale, somewhat mealy; stem of the same colour, shining ; gills decurrent, rather thick, forked, flesh-coloured.-Ann. of Nat. Hist. Oct. 1848, p. 260.

On an exposed common, amongst Polytrichum aloides. Hanham, near Bristol. This little species has the habit and nearly the colours of minute A. laccatus.
171. A. (Omphalia) stellatus, Sow.; white; pileus slightly fleshy or membranaccons, convex, umbilicate, smooth, striate, diaphanous; stem equal, brittle, stuffed, floccoso-radiate at the base ; gills thin, broad, decurrent, very distant.-Sow. t. 107.

On sticks, decaycd stems of herbaceous plauts, etc. Not
eommon. Distinguished by its thin gills from every state of A. umbelliferus.

*** At first campanulate, with the margin straight.

172. A. (Omphalia) Campanella, Batsch; pileus membranaeeous, convex, umbilieate, striate, hygrophanous; stem fistulose, dark-brown, attenuated at the base, and elothed with tawny spongy down or hair; gills decurrent, areuate, conneeted by veins, yellow.-Sow. t. 163.
In fir-woods. Not uneommon. Often erspitose. Pileus ferruginous, yellow. A beautiful speeies, whieh oceurs also in tropieal Ameriea. The form of the eap is variable, but the dark stem and tawny pubeseenee at the base readily distinguish the speeies.
173. A. (Omphalia) camptophyllus, B.; pileus convexoplane, deeply striate; stem minutely pubeseent, radiato-strigose at the base, minutely fistulose; gills white, aseending, then suddenly decurrent.-Eng. Fl. l. c. p. 62.

On stieks, etc. Rare. Margate. Pilcus brown, with a grey margin, half an ineh across. Stem 2 inches high.
174. A. (Omphalia) griseus, Fr.; pileus submembranaecous, eampanulate, then convex, smooth, striate, hygrophanous; stem fistulose, rather firm, smooth, self-coloured whitish-grey, as well as the slightly decurrent, arenate, thiekish, somewhat distant gills.
In pine-woods. Sherwood Forest, Notts. A small species.
175. A. (Omphalia) Fibula, Bull.; pileus membranaecous, turbinate, at first convex, at length somewhat umbilieate, striate, growing pale, even, dry, orange as well as the slender stem ; gills deeply decurrent, paler.-Sow. t. 45.

Amongst moss. Very common. There is a variety with a brown pileus and white gills. It is always a neat and pretty species.
176. A. (Omphalia) Belliæ, Johnst. ; pilcus dry, membranaceous, eup-shaped, of a pale wood-eolour; stem thin, fistulose, cartilaginous, pale above, brownish below, adhering by a floecose base; gills thiek, paler than the pileus, deeurrent, interstices veiny.-Amn. of Nat. Hist. ser. 1. vol. vi. t. 10. f. 1 .

On dead stems of the common reed. Berwiekshire, Lord Home. See description in the place eited above.
177. A. (Omphalia) integrellus, P.; white, brittle; pileus membranaeeous, hemispherieal, expanded, pellueid, eonscquently striate; stem very slender, short, pubescent below; gills distant, deeurrent, rather branehed, edge aeute.

On deeayed stieks, cte. Rare. King's Cliffe.
Subgenus 9. Pleurotus.-Stem excentric, lateral, or wanting. Mostly growing "on wood.

1. Pileus entirc.

* Furnished with a veil.

178. A. (Pleurotus) dryinus, P.; pileus hard, eompaet, oblique, variegated with dark spot-like seales; veil white, torn, fugacious; stem lateral, blunt; gills decurrent, narrow, nearly simple.-Huss. ii. t. 29, 33.

On trunks of ash, willow, etc. A beautiful speeies. Seattered here and there, but never in any abundance.

** Gills emarginate.

179. A. (Pleurotus) ulmarius, Bull.; pileus fleshy, compaet, eonvexo-plane, smooth, moist, somewhat spotted ; stem rather exeentrie, stout, thiekened below, subtomentose ; gills adnexed, emarginate or rounded, rather elose, broad, dirty-white.-Sow. t. 67 .

On elm-trunks, generally many feet from the ground. Not
very common. A large and magnificent speeies when well grown. I suspeet there is a elosely allied speeies, with a veil varnished bencath, of which I onee had an imperfeet specimen from Mrs. Husscy.
180. A. (Pleurotus) subpalmatus, Fr. ; pileus soft, fleshy, eonrexo-plane, obtuse, smooth, wrinkled and gelatinous, espeeially when young; stem execntrie, ineurved, equal; gills adnate, crowded, broad, reddish.-Sow. t. 62.

On squared timber, old trunks, ete. In several parts of England. Pileus orange-buff, pruinose; flesh mottled, like that of Fistulina hepatica; stem fibrous within, smooth, white; gills joined bchind, so as to form an obsolctc collar. A beautiful and interesting species.
181. A. (Pleurotus) fimbriatus, Bolt.; pilcus thin, fleshy, plane, then infundibuliform, even, hygrophanous; margin at length lobed and waved ; stem subexcentric, eompressed, firm, short, rootless, villous; gills thin, adnate, very erowded, somewhat forked, white.-Bolt. t. 61 .

On trunks of trees. Rare. East Bergholl, Dr. Badham. Nearly white. Pileus 3 inehes aeross.

*** Gills decidedly deeurrent.

182. A. (Pleurotus) euosmus, B.; imbrieated, strong.scented ; pilcus depressed, shining and satiny when dry ; stem short or obsoletc, eonfluent; gills ventricose, very deeurrent, dingy-white ; spores pinkish.-Huss. i. t. 75.

On clm-posts. Spring. Hayes, Kent. East Bergholt. Pilcus 3 inehes across. Somewhat resembling the next, but distinguished by a peeuliar seent like that of tarragon, and by its pale lilae spores. Not eseulent.
183. A. (Pleurotus) ostreatus, Jacq.; pileus soft, flesly, subdimidiate, eonehate, ascending, turning pale; stem short
or obsolete, firm, elastie, strigose at the base; gills decurrent, rather distant, anastomosing behind, dirty-white.-Huss. ii. t. 19.

On trees, especially laburnum. Late in the autumn, or winter. Pileus cinereous. A. glandulosus is only a form of this. At least, I have seen deeided A. ostreatus with glandular gills.
184. A. (Pleurotus) salignus, Hoffin.; pileus at first eompact, then spongy, subdimidiate, horizontal, at first pulvinate, even, thell depressed, substrigose ; stem short, white, tomentose ; gills decurrent, somewhat branehed, eroded, distinet at the base, nearly of the same colour.

On trinks of trees. Not common. Mostly solitary, or at least not densely imbrieated. Ochraceous when old.

II. Dinidiate, but not resupinate.

185. A. (Pleurotus) petaloides, Bull.; aseending; pilens flesly, entire, spathulate; dise depressed, villous, as well as the compressed stem; gills decurrent, erowded, linear, dirty-white.-Bull. t. 226, 557.

On the ground, amongst grass. Rare. Purton.
186. A. (Pleurotus) serotinus, Schrad.; pileus fleshy, eompaet, viseid ; stem thiek, lateral, squamulose, with dingy spots; gills determinate, crowded, yellow or pallid.

On trunks of trees. Rare. Mossburnford, A. Jerdon, Esq. Pileus 2-3 inehes aeross. Easily known by its deeided stem. Pilens yellowish or dingy-olive.
187. A. (Pleurotus) mitis, P; pileus slightly fleshy, tough, reniform, even, smooth; stem lateral, eompressed, dilated above, elothed with little white seales; gills erowded, determinate, distinet, white. (Plate 6, fig. 9.)

On dead larch. Scotland, Klotzsch. Nottinghamshire,
abundant, but I have not found it elsewhere. About 1 ineh aeross. My speeimens are pure white, but it is said to be sometimes rufous, growing pallid as it loses its moisture.
188. A. (Pleurotus) tremulus, Schaff.; pileus slightly fleshy, reniform, depressed, tough, even ; stem marginal, distinet, nearly round, aseending, villous; gills adnate, determinate, linear, distant, grey.-Sow. t. 242.

Amongst moss, on Fungi, ete. Rare. Malvern Hills. Purton. Seotland, Hooker. Denbighshire, on Moelfre-uehaf. About 1 inch aeross. Grey. Stem attached to the matrix by a woolly mass.
189. A. (Pleurotus) acerosus, Fr.; pileus membranaeeous, reniform, plane, striate, somewhat lobed, hygrophanous; stem very short or obsolete, lateral, somewhat strigose at the base ; gills determinate, linear, erowded, simple, grey.-Bolt, t. 72. f. 3 .

On gravel, lawns, wood, ete. Rare. Hiteham, Suffolk, Prof. Henslow. A small grey speeies.
> III. Pileus at first resupinate.
> * Pileus fleshy, uniform.
190. A. (Pleurotus) porrigens, P.; white ; pileus fleshy, tough, at first resupinate, then aseending from the extended hase, ear-shaped, smooth above ; gills very narrow, linear.

On old pine-trunks. Rare. Inverary, Klotzsch.
191. A. (Plourotus) septicus, P.; white; pileus thin, slightly fleshy, resupinate, then refleeter, even, pubeseent; stem slender, ineurved, pubeseent, at length evaneseent; springing from byssoid rootlets; gills distant.-Sow. l. 321.

On twigs, deeayed Fungi, dung, cte. Not uneommon. Pure white, very variable in size and form, but always small.
*** Pileus fleshy, with a gelatinous coat.
192. A. (Pleurotus) mastrucatus, Fr.; pileus fleshy, upper stratum gelatinous, at first resupinate, then expanded, sessile, lobed, sealy ; gills greyish-white.-Sow. t. 99 .

On old trunks of trees. Rare. Pileus 1-4 inehes aeross. Imbrieated.
193. A. (Pleurotus) atro-cæruleus, Fr.; pileus fleshy, upper stratum gelatinous, at first resupinate, then obovatoreniform, tomentose ; gills crowded, white, ehanging to yellow.

On trunks of trees. Rare. Penzanee, J. Ralfs, Esq.
194. A. (Pleurotus) algidus, $l ?$.; pileus flesly, with a thin gelatinous coat, at first resupinate, then expanded, reuiform, smooth ; gills rather wide, erowded, pale yellowish.

On trunks of trees. Linlithgowshire, J. C. Bauchop. About an ineh aeross. Pileus reddisli-umber or einereous.
195. A. (Pleurotus) Leightoni, B.; pileus at first ob. liquely conieal, umber, then lead-coloured, furfuraceous, with short seattered bristles intermixed; upper stratum gelatinous; gills rather thick, tan-eoloured, distant, somewhat forked at the base, slightly undulated; interstiees seareely retieulated.

On wood. Montford-bridge, near Shrewshury, Rev. W. A. Leighton. Pileus 5 lines broad.-Ann. of Nat. Hist. xiii. t.9.f.1.
196. A. (Pleurotus) cyphellæformis, B.; pileus cupshaped, then dependent ; upper stratum gelatinous, einereous, very minutely strigose, especially at the base; margin paler sprinkled with a few meal-like seales; gills pure white, rather distant, narrow, linear.-Mag. of Zool. and Bot. i. ℓ. 15. f. 3.

On dead stems of herbaceous plants. Minute. Allied to A. applicatus.

> *** Pilcus membranaccous.
197. A. (Pleurotus) Hobsoni, B.; pilens membranaeeous,
reniform or dimidiate, stemless, pale grey, minutely downy; gills rather distant, pallid.

On lareh-stumps. Apethorpe. Sept. 1859. Yileus 1-4 lines aeross; margin involute. Named after Lieut. Julian C. Hobson, who has sent several interesting Fungi from the neighbourhood of Poona.
198. A. (Pleurotus) applicatus, Batsch; dark, einereous; pileus rather firm, somewhat membranaeeous, resupinate, then refleeted, somewhat striate, subpruinose, strigose behind ; gills loose, paler.-Sow. t. 301.

On dead fallen branches in woods. Extremely common. About one-third of an ineh aeross.
199. A. (Pleurotus) striatulus, Fr.; pale einereous; pileus very delieate, striate, flaceid, smooth; gills few, distant.

On fir-wood, hazel-twigs, etc. Scotland, Capt. Carmichael. 200. A. (Pleurotus) hypnophilus, P.; resupinate, flat, white; pileus subreniform, nearly smootli; gills simple.Pers. Myc. Eur. iii. t. 24. f. 5 a.

On the larger mosses and fallen leaves. Appin, Capt. Carmichael.
201. A. (Pleurotus) chioneus, P.; snow-white, subresupinate, minute; pileus very thin, villous; gills rather broad; stem very short, villous, at length obsolete.-Pers. l.c. t. 26. f. 10, 11.

On wood or dung. Rare. Lytehett, Dorsetshire. Allied to A. septicus, and differing in its very thin pileus.

Series 2. Hyporhodir.-Spores salmon-coloured. Subgenus 10. Voutaria.-Veil universal, forming a volva distinet from the cuticle. Hymenophorum distinct from the stem.

> * Silliy or fibrillosc.
202. A. (Volvaria) bombycinus, Scheeff: pileus soft, fleshy,
campanulate, then expanded, self-eoloured, elothed with silky threads ; stem solid, attenuated, smooth ; volva very large, dark externally ; gills free, flesh-eoloured. (Plate 7, fig. 1.)

On decayed wood. Rare. Pileus 3-4 inches aeross; volva lobed.
203. A. (Volvaria) volvaceus, Bull. ; pileus soft, fleshy, eampanulate, then expanded, obtuse, virgate, with little elosepressed, black fibres; stem solid, nearly equal; volva loose; gills free, flesh-coloured.-Sow. t. I.

In stoves, on the sides of roads, ete. Rare in the latter situation. Pileus $3-4$ inehes aeross.
204. A. (Volvaria) Loveianus, B. ; pileus thin, fleshy, subtruncate, globose, then convex, obtuse, white, silky ; stem solid, attenuated upwards; volva loose, lobed; gills free, rose-coloured. (Plate 7, fig. 2.)

Parasitie on Ag. nebularis. Very rare. Cæspitose. Pileus $2 \frac{1}{2}$ inches aeross. This is A. surrectus, Knapp in Journ. of a Nat.
205. A. (Volvaria) Taylori, B. ; pileus thin, conical, obtuse, livid, striato-rimose from the apex; stem pale, solid, nearly equal; volva lobed, brown, small; gills uneven, broad in front, attenuated behind, rose-coloured.

On the ground. Jersey, Michael Angelo Taylor, Esq. Remarkable for its attenuated, unequal gills.
206. A. (Volvaria) pusillus, Fr.; pileus subcampanulate, submembranaceous, silky, slightly viscid; stem nearly equal, solid; volva small, lobed; gills free, rose-eoloured.-Bull. t. 330 .

In pastures after stormy weather. Common. Very variable in size, from a few lines to 2 inehes; white, sometimes tinged with yellow or brown. Stem smooth or squamulose. Exactly the plant of Bulliard. Whether it is the same with A. parvulus, Fr., is not so elear. Slightly viscid when moist.
207. A. (Volvaria) speeiosus, Fr.; pileus soft, flesly, eampanulate, then expanded, obtuse, smooth, even, viseid; dise grey; stem solid, somewhat bulbous, attenuated upwards, villous as well as the loose volva. (Plate 7, fig. 3.)

On dunghills, roadsides, ete. Rare. Pileus 2-3 inches aeross.

Subgenus 11. Pluteus.-Hymenophorum distinct from the stem. Veil none.
208. A. (Pluteus) cervinus, Scheeff.; pileus fleshy, eampanulate, then expanded, smooth, then breaking up into little fibres or seales; margin naked; stem solid, rough with blaek fibrillæ; gills erowded, free, white, then flesh-eoloured.-Sow. t. 108.

On trunks of trees. Not uneommon. Pileus 2-3 inches aeross.
209. A. (Pluteus) umbrinus, Fr. ; pileus flesly, eampanulate, then expanded, laeunose at first ; margin eiliato-fimbriate ; stem solid, villoso-squamose; gills free; margin fimbriate.Pers. Ic. et descr. t. 2. f. 5, 6.

On dead trunks. Coed Coeh. My form is just that of Persoon.
210. A. (Pluteus) nanus, P. ; pileus slightly fleshy, convexoplane, rugulose, sprinkled with dingy meal ; stem solid, rigid, short, striate, white; gills free, white, then flesh-coloured.Bull. t. 547. f. 3.

On fallen stieks. Wothorpe, Norths. Pileus about 1 ineh aeross.
211. A. (Pluteus) petasatus, Fr.; pilcus fleshy in the eentre, campanulate, then expanded, umbonate, quite smooth, viscid, with a separable euticle, membranaecous half-way up, and at
length striate; stem tall, solid, rigid, fibrilloso-striate, attenuated upwards; gills very broad, free, erowded, drying up, white, then reddish.-Ann. of Nat. Hist. xiii. pl. 9. f. 2.

On sawdust, in England, Seotland (Lady Orde), and Wales, but not common.
212. A. (Pluteus) leoninus, Scheeff.; pileus submembranaceous, eampanulate, then expanded, smooth, naked, margin striate; stem solid, smooth, striate; gills free, yellow, then flesh-coloured. (Plate 7, fig. 4.)

On wood. Rare. Pileus often of the most brilliant orange.
213. (A. Pluteus) chrysophæus, Scheff.; pileus submembranaeeous, eampanulate, then expanded, naked, nearly even, smooth or somewhat virgate, margin striate; stem smootl; gills free, white, then flesh-eoloured. (Plate 7, fig. 5.)

On wood, hollow trees, cte. Not uneommon. Pileus dingy, 2 inches or more aeross. Stem white or yellowish, solid in my specimens, but hollow according to Fries.
214. A. (Pluteus) phlebophorus, Dittm.; pilcus slightly flesly, convex, expanded, marked with prominent veins, naked, margin even; stem fistulose, smooth, ineurved, shining ; gills free, white, then flesh-coloured.

On fallen sticks. Rare. Pileus about an ineh broad. A very beautiful species.

Subgenus 12. Entoloma.-Hymenophorum continuous with the
fleshy or fibrous stem; gills sinuato-adnesed, or parting from the stem.
215. A. (Entoloma) fertilis, P.; pileus smooth, pulverulentosquamulose, dry, fleshy, obtuse ; stem fibrillose, subsquamulose, somewhat bulbous; gills flesh-eoloured, adnexed.-Bull. t. 590, 547.f.l.

In woods. Smell like that of fresh meal. Pileus 4 inehes
or more aeross, of a pinkish-buff. Exaetly the plant of Bulliard. A. simuatus, Fr., under whieh Bulliard's figures are quoted, must be different.
216. A. (Entoloma) prunuloides, $F r$; pileus fleshy, eampanulate, then expanded, umbonate, even, smooth, slightly viseid; stem solid, unequal, smooth, somewhat striate, white ; gills free, whiite, then flesh-eoloured, ventrieose.

On the ground. Rare. Mossburnford, A. Jerdon, Esq. Gills emarginate. Smell farinaceous.
217. A. (Entoloma) Placenta, Batsch; pilens fleshy, convex expanded, umbonate, regular, smooth, brown as well as the solid, equal, fibroso-striate stem; gills emarginate, adnexed, erowded, rather thiek, pallid flesh-eolour.-Batsch, f. 18.

On the ground. Swanage, C. E. Broome.
218. A. (Entoloma) Elodes, Fr. ; pileus slightly fleshy, con-rexo-plane, somewhat umbonate, moist, becoming smooth; stem hollow, pallid, fibrillose, thiekened at the base; gills emarginate, adnesed, rather distant, white, then flesh-coloured.

On moors. Coed Coch. Smell like that of new meal. Pileus purple, dingy-brown, ete.
219. A. (Entoloma) repandus, Bull.; pileus fleshy, eonieal, umbonate, indistinetly silky; margin lobed ; stem short, solid, minutcly silky, white; gills dull rose-eoloured, broad in front. —Bull. t. 423. f. 2.

Amongst grass. Rare. Pileus 1-2 inehes aeross. Smell like that of fresh meal. Certainly not the plant of Fries.
220. A. (Entolomá) Bloxami, B. and Br.; pileus compaet, eampanulate, obtuse, somewhat loberl, moist, blaekislı-blue, somewhat silky; flesh white; stem slightly attenuated upwards, obtuse at the base ; gills rather broad, attenuated, adnexerl.

In open, exposed pastures. Not uneommon. Pileus 1 ineh or more aeross.
221. A. (Entoloma) ardosiacus, Bull.; brittle ; pileus slightly fleshy, eonvex, then expanded and depressed, even, smooth, moist; stem hollow, elongated, steel-blue, attenuated from the white base; gills nearly free, erowded, greyish flesh-eoloured. Bull.t. 348.

In moist meadows. A doubtful native, introdueed on the authority of Sibthorpe.
222. A. (Entoloma) frumentaceus, Bull. ; pileus fleshy, firm, rather brittle, nearly plane, dry, finely streaked; stem streaked and slightly eraeked, obtuse at the base ; gills broad, emarginate or rounded behind, einereous, with a reddish-yellow tinge. —Bull. t. 571.f. 1.

On the ground, under a hedge. Rare. Woodnewton, Northamptonshire. Pileus $3 \frac{1}{2}$ inehes aeross, buff, tinged with red as well as the stem.
223. A. (Entoloma) sericellus, Fr.; pileus slightly fleshy, eonvexo-plane or depressed, silky, at length squamulose ; stem subfistulose, fibrillose, white, becoming pallid; gills adnate, seeeding, slightly distant, white, then flesh-coloured.

In woods. Not uneommon. Resembling Persoon's figure, Ie. t. 6. f. 2, quoted doubtfully by Fries, but not execeding an ineh in diameter. Pileus and stem white. Stem solid or densely stuffed, never fistulose in the British plant.

** Pileus hygrophanous.

224. A. (Entoloma) clypeatus, L. ; pileus slightly fleshy, eampanulate, then expanded, umbonate, somewhat virgate, smooth, hygrophanous; stem stuffed, attenuated, fibrillose, beeoming pallid; gills rounded behind, adnexed, seeeding, serrulate, of a dirty flesh-colour.-Huss. ii. t. 42.

In gardens, ete. Not uneommon. Pileus 4 inehes or more aeross.
225. A. (Entoloma) rhodopolius, Fr. ; pileus slightly fleshy, eampanulate, then expanded, at length slightly depressed, hygrophanous; margin flexuous; stcm hollow, nearly equal, smooth, white, pruinose above; gills sinuated, adnate, white, then rose-coloured. (Plate 7, fig. 6.)

In woods, ete. Not uneommon. Pileus about 3 inches aeross. Smell like that of fresh meal.
226. A. (Entoloma) eostatus, Fr.; pileus thin, eonvexobullate, then nearly flat, subumbilicate, undulated, smooth, hygrophanous; stem hollow, short, irregular, somewhat striate, grey, with a few little white seales above; gills quite entire, nearly free, transversely ribbed, pallid.

In meadows. Very common. Pileus 2 inehes or more aeross.
227. A. (Entoloma) sericeus, Bull.; pileus earnoso-membranaceous, convex, expanded, smooth, hygrophanous, silky when dry; margin inflected, waved, slightly striate; stem short, fistulose, fibrillose; gills emarginate, plane, rather distant, greyish.-Bull. t. 413. f. 1.

In meadows. Not uneommon. Smell like that of mcal. In part A. pascuus, Eng. Fl.
228. A. (Entoloma) nidorosus, Fr.; pileus earnoso-membranaceous, eonvex, expanded, somewhat depressed, smooth, hygrophanous, when dry shining with a silky lustre; stem equal, smooth, white, beeoming pallid, pruinose above; gills emarginate, separating from the stem, broad, somewhat distant, flexuous, slightly diseoloured.
.In woods. Common. Pileus from $1 \frac{1}{2}$ to 3 inches aeross. Smell strong, nitrous. This is A. rhodopolius of Eng. Fl.

Subgenus 13. Clitopilus.-Hymenophorum confluent with the fleshy or fibrous stem; gills decurrent.
229. A. (Clitopilus) prunulus, Scop.; pileus fleshy, com-
paet, at first eonvex, regular, at length depressed, waved, pruinose, dry; stem solid, ventrieose, naked, striate; gills deeply deeurrent, rather distant, white, then flesh-eoloured.(Plate 7, fig. 7.) -Huss. ii. $t .47$.

In woods. White, or slightly einereous. Smell like that of new meal. Eseulent.
230. A. (Clitopilus) mundulus, Lasch; pileus fleshy, thin, tough, plano-depressed, unequal, polished, dry; stem stuffed, slender, floeeulose, thiekened at either end, at length blaek within; gills deeply deeurrent, very erowded, narrow, pallid. -A. nigreseens, Lasch, n. 521.

In woods. Seotland, Klotzsch. King's Cliffe. A. carneoalbus, With., is very doubtful.

Subgenus 14. Leptonia. - Stem with a cartilaginous bark. Margin of pileus at first incurved; gills separating from the stem.
231. A. (Leptonia) lampropus, Fr.; pilcus slightly fleshy, obtnse, eonvex, flattened, not striate, at length depressed, squamulose, broken up into floeci; stem subfistulose, even, unspotted, steel-violet; gills adnate, ventrieose, at first dirtywhite.

In pastures. Not uneommon. Pileus $1 \frac{1}{2}$ ineh aeross.
232. A. (Leptonia) serrulatus, P.; pileus earnoso-membranaeeous, hemispherieal, then expanded, umbilicate, subsquamose, stem fistulose, smooth, blaek, dotted above, gills adnate, separating, broad at first, bluish, then greyish flesheoloured, edge blaek, finely notehed.

In woods. Rare. Wothorpe, ete. Stem sometimes grey. Easily distinguished by the serrate edge of the gills.
233. A. (Leptonia) euchrous, P.; pileus slightly fleshy, eampanulate, then eonvex, obtuse, squamuloso-fibrillose; stem
stuffed, smooth, violet; gills adnexed, ventricose, violet, edge entire, darker.-Pers. Syn. p. 343.

On alder-trunks. Rare. Mossburnford, A. Jerdon. Gills smalt-blue when young. Cæspitose, not an inch aeross.
234. A. (Leptonia) chalybæus, P.; pileus slightly fleshy, convex, subumbonate, not striate, at first floceulose, then squamulose ; stem stuffed, smooth, blue; gills cmarginate, aduexed, broad, ventricose, at first of a glaueous dirty-white, edge darker. Sow. t. 161.

In pastures. Not uncommon. Pileus $\frac{1}{2}-1$ inch broad.
235. A. (Leptonia) incanus, Fr.; pileus submembranaceous, eonvexo-plane, umbilieate, smooth, with a silky lustre, or virgate, margiu striate ; stem fistulose, shining, smooth, brownishgreen; gills adnate, separating from the stem, broad, rather distant, white, then greeuish.-Sow. t. 162.

In pastures. Not uneommon. Smell exaetly like that of mice. Stem often with bcautiful verdigris-coloured down at the base.-A. Sowerbeii, Eng. Fl.
236. A. (Leptonia) asprellus, Fr .; pileus submembranaecous, convex, flattened, striate, hygrophanous, umbilieus darker, squamuloso-fibrillose; stem fistulose, slender, smooth; gills adnate, separating from the stem, rather distant, equally attenuated, whitish-grey.

In open pastures. Rare. Bristol, H. O. Stephens. Wansford.

Subgenus 15. Notanea.-Stem cartilaginous. Margin of pileus at first straight, pressed to the stem.
237. A. (Nolanea) paseuus, P. ; pileus membranaceous, eonieal, expanded, subumbonate, smooth, striate, hygrophanous, when dry shining like silk; stem fistulose, brittle, striate,
fibrous; gills attenuated behind, nearly free, ventrieose, erowded, dirty-greyish. - Bolt. t. 35.

In pastures. Not uneommon. Inodorous. Stem eompressed, splitting.
238. A. (Nolanea) rufo-earneus, B.; pileus submembranaecous, hemispherieal, umbilieate, indistinetly fibrilloso-squamulose, red-brown; margin striate; stem elongated, pale rufous, rather incrassated at the base; gills adnate, ventrieose, attenuated behind, slightly connected and traversed by veins. —Eng. Fl. v. pt. 2. p. 82.

On lieaths. Dorset. Pileus 1 inel aeross ; stem $2 \frac{1}{2}$ inehes high. Taste rather bitter.
239. A. (Nolanea) rubidus, B. ; pileus membranaceous, eonvex, at lengtl umbilieate, finely silky; stem short, thiekest above, solid, minutely silky; gills broad, ventrieose, adnate, attenuated behind, sometimes subdecurrent, whitish, then rose-eoloured.-Mag. Zool. and Bot. i. t. 2. f. 2.

In stoves. Milton. Pileus one-third of an ineh across; stem $1 \frac{1}{2}-2$ lines high, white or greyish. Smell like that of new flour.
240. A. (Nolanea) Babingtonii, Blox.; pileus eonieo-eampanulate, einereous, slining like silk, adorned with dark brown subfaseieulate fibres, whieh are free at one end; stem equal, fistulose, elothed with dark brown down, substrigose; gills ventricose, distant, einereous, darker at the base, adnate, glittering with little points.-Ann. of Nat. Hist. v. xiii. ser. ii. p. 400.

Rare. Tryeross, Rev. A. Bloxam. Oecurs also in Pemnsylvania. Pileus seareely half an inch aeross.

No speeies of the subgenus Eccilia has yet oceurred in Great Britain.

Series 3.-Dermini. Spores ferruginous, sometimes tawny or brownish.*

Subgenus 16. Pholiota.-Stem furnished with a ring.
241. A. (Pholiota) aureus, Mathusk.; pileus fleshy, convex, obtuse, sprinkled with innate hairy seales; stem solid, nearly equal; ring narrow, spreading; gills emarginate, olivaceous, then ferrnginous.-Sow. $t .77$; Huss. i. $t .71$.

On dead stumps. Not uneommon. Spores ferruginous. Pileus 4 inehes aeross, of a golden-tawny ; gills rounded hehind, and decurrent in the same group of speeimens; stem minutely squamulose above, fibrillose below, not smooth as in the eharaeter of Fries. Taste bitter.-See Observations in Eng. F\%.
242. A. (Pholiota) durus, Bolt.; pileus somewhat eompact, eonvero-plane, smooth, at length cracked into little areæ; margin even; stem stuffed, hard, fibrous externally, rather thiekened above and mealy; ring more or less torn; gills adnate, ventricose, livid, then of a brown-rust colour.-Bolt. t. 67. f. 1 .

In gardens, Bolton. Brighton, Dr. Badham. Pileus pale tawny, or brownish-tan.
243. A. (Pholiota) præcox, P.; pilcus soft, fleshy, eonvexoplane, obtuse, even, at length smooth; stem stuffed, then hollow, cylindrie, farinoso-pubescent, at length smooth, white, as well as the entire ring; gills emarginate, adnexed, erowded, white, at length brownish. (Plate 8, fig. 1.)

In gardens and pastures. Spring. Common. About two inches aeross. Ring striate above. Paler than the last, but it is very doubtful whether it is really distinet.

[^29]244. A. (Pholiota) radicosus, Bull.; pileus fleshy, equal, obtuse, at first shining spotted with adpressed seales; stem solid, rooting, mealy above the distant ring, eoneentrieally sealy below; gills ventrieose, pallid, then reddish-brown.Bull. t. 160 .

In woods. Not uneommon. Pileus 3 inehes or more aeross, of a dirty pale-oehre ; gills adnate, but free according to Fries, whose character is perhaps taken from Bulliard. Smell like that of prussie aeid.
245. A. (Pholiota) pudicus, Bull.; pileus fleshy, eonvex, then expanded, obtuse, dry, smooth ; stem solid, nearly equal, even; ring spreading, persistent; gills rounded belind, adnexed, ventrieose, whitish, then tawny.-Huss. ii. t. 31.

On elder-trunks, ete. Not common. Canterbury, ete. Pileus sometimes rivulose, dirty-white. Esculent.
246. A. (Pholiota) comosus, Fr. ; pileus fleshy, eonvex, obtuse, viseid, sprinkled with evaneseent, superfieial, floceose seales; stem solid, somewhat bulbous, white, as well as the evaneseent floeeose ring; gills quite entire, subdecurrent, white, then of a brownish elay-colour.-Bolt. t. 42.

On trmons. I know nothing of this speeies.
247. A. (Pholiota) aurivellus, Batsch ; pileus fleshy, eampanulate at first, then eonvex, gibbous, slightly viseid, variegated with elose-pressed darker seales; stem stuffed, nearly equal, eurved, sprinkled with brownish, ferruginous, elose-pressed seales; ring rather distant; gills sinuated behind, fixed, white, then straw-eoloured, and finally ferruginous.-Batsch, f. 115 .

On trunks of trees. Rare. Pileus tawny, 3 inehes aeross. 248. A. (Pholiota) squarrosus, Mïll.; pileus fleslyy, eampanulate, then eonvex, expanded, dry, rough with squarrose, crowded, innate, dark, revolute seales, as well as the attenuated
stem ; gills subdecurrent, erowded, narrow, pale olive, then ferruginous.-Sow. t. 284; Huss. i. t. 8.

On trunks of trees. Very common. Cæspitose. Pileus brownish-tawny, 3 inehes aeross. Very handsome. There are one or two varieties with less squarrose seales.
249. A. (Pholiota) adiposus, Fr.; pileus eompaet, convexoplane, obtuse, yellow, glutinous, and rough with superfieial, evaneseent, coneentrie, darker seales, as well as the stuffed, somewhat bulbous stem; gills adnate. hroad, yellow, then ferruginous. (Plate 8, fig. 2.)

On beeeh and ash trunks. Extremely beautiful, growing in large tufts; eoloured like a ripe pine-apple.
250. A. (Pholiota) flammans, Fr.; pileus fleshy, eonvexoplane, somewhat umbonate, dry, elothed with superfieial, hairy, paler seales ; stem stuffed, then hollow, equal, somewhat flexuous, rough with seales; ring entire, yellow, as well as the fixed, erowded, very entire gills.

In pine-woods. Seotland. Pileus tawny, seales yellow. A very pretty speeies.
251. A. (Pholiota) mutabilis, Scheeff.; pileus fleshy, convex, then flattened out, turning pale ; margin thin; stem rigid, stuffed, then hollow, rough with seales, dark brown at the base; gills adnato-decurrent, crowded, pale, then einnamon. (Plate 8, fig. 3.)-Huss. ii. t. 27.

On trunks of trees, espeeially lime-stumps, or on the ground. Not uneommon. The ehangeable, smooth, einnamon-eoloured pileus easily distinguishes this speeies, whieh varies mueh in size.
252. A. (Pholiota) marginatus, Butsch; pileus slightly fleshy, eonvex, expanded, smooth, moist, hygrophanous; margin striate ; stem fistnlose, soft, not sealy, pruinose above the fugitive ring, darker at the base, and elothed with white
velvety down; gills adnate, crowded, watery cinnamon.Batsch, f. 207.

On the ground, especially amongst firs. Common.
253. A. (Pholiota) pumilus, Fr . ; pilcus slightly fleshy, hemispherical, obtuse, even ; stem fistulose, thin, subfibrillose, ring rather fugacious; gills adnate, crowded, broad, yellowish.

In woods. Rare. Wothorpe, October 1859. Pileus only a few lines broad, yellowish.
254. A. (Pholiota) myconoides, $F r$. ; pilcus membranaccous, campauulate, then convex, decply striate, hygrophanons, smooth, as well as the fistulose, slender, ferrnginous stem; ring membranaceous, white; gills aduate, rather distant, fer-ruginous.-Am. Nat. Hist. ser. ii. vol. ii. p. 261. t. 9. f. 1 (A. mesodactylius).

On the ground, in damp dells. Rarc. My plant has a white stem, but, as Fries considers it the same with his A. mycenoides, I am coutent to follow his views.
255. A. (Pholiota) Leveillianus, Doz. and Molk.; hard, fleshy, thin, convex, umbonate, clothed with a glutinous, dark brown, opaque pellicle, at length wrinkled and paler when dry; stem hollow, nearly equal, fibrilloso-squamose below the ring, white, with a reddish tinge; gills broad, adnate, decurrent, white, then pink, at length rufous.-A. jccorinus, B. and Br. l.c.p. 260.

On soil. Rare. Rushton, Northamptonshire. About $1 \frac{1}{2}-2$ inches across.

Subgenus 17. Hebeloma.-Veil, if present, floccose, not interwoven. Stem fleshy; gills sinuated.

1. Cutiele fibrous, dry.

* Pileus squarrose; stem scaly, llark.

256. A. (Hebeloma) relicinus, Fr .; pilens fleshy, thin, co-
nieal, then expandcd, obtuse, rough with tomentose seales; stem solid, soft, equal, floceoso-squamose; gills adnexcd, erowded, yellow, then dingy-olive.

In marshy fir-woods, amongst Sphagna. Kinnordy, Klotzsch. Pileus 1 inel aeross.
257. A. (Hebeloma) lanuginosus, Fr .; pilcus fleshy, hemispherieal, expanded, obtuse, floceoso-squamose, the seales of the dise ereet and sharp; stem thin, solid, squamoso-fibrillose, elothed with white dust above; gills thin, separating, toothed, of a pallid elay-colour. Pileus umber, inelining to yellow.Bull. t. 370 .

On the ground. Not common. The gills in Bulliard's plate are represented as reddish, but in the text they are deseribed as "fuligineo-ferrugineæ."
258. A. (Hebeloma) plumosus, Bolt. ; pileus slightly fleshy, convexo-plane; dise squarrose, with ereet, faseieulate hairs; margin fibrillose; stem stuffed, then hollow, slender, flexuous, floeculoso-squarrose, naked above; gills subadnate, seareely erowded, ventricose, quite entire, dingy.-Bolt. t. 33.

In moist pine-woods. I have not met with this species. *** Pileus scaly; stem fibrillose, paler than the pileus.
259. A. (Hebeloma) pyriodorus, P.; pileus fleshy, conical, then expanded, umbonate, elothed with adpressed, fibrous seales; stem stuffed, firm, equal, fibrillose from the remains of the veil; pruinose and pale above; gills emarginate, rather distant, dirty-white, then reddish-brown.

In woods. Not uneommon. Sneell like that of decaying pears. Pileus 2 inehes aeross, pale brownish-oehre.
260. A. (Hebeloma) seaber, Müll.; pileus flesly, eonieal, then obtusely gibbous, sprinkled with elose-pressed fibrous seales; stemi thick, solid, equal, clothed with silky threads, veiled; gills adnexed, crowded, dingy.-Sow. t. 207.

In woods. Not common. Pilcus $1 \frac{1}{2}$ inch across, dingy. 261. A. (Hebeloma) lacerus, Fr.; pileus somewhat flcsly, convex, expanded, obtuscly umbonate, clothed with little fibrillose scales; stem stuffed, thin, short, fibrillose, naked above, red within; gills adncxed, broad, ventricose, white, tinged with red, then mousc-coloured.

On the naked ground, in woods. Not uncommon.
262. A. (Hebeloma) flocculosus, B.; pilcus subcarnosc, convex, subcampanulate, umbonatc, scriceo-squamulose; stem fibrillose, squamuloso-pulvcrulent above; gills pale fawrcoloured, then obscurcly ferruginous, ventricose, adnatc.Eng. Fl. l. c. p. 97.

On the naked soil, and amongst grass. Rarc. Smell likc that of new meal. Pileus 1 inch across, brownislı-fawn. Amongst grass the pilcus is smoother, more tawny, and the gills broadly adnate.
263. A. (Hebeloma) Hookeri, Klotzsch; pilcus submembranaceous, obtusc, umbonatc, clothed with branny scales; stem shining, purple, pruinose with fawn-coloured meal; gills purple, at length cimamon, adnexcd.-Eng. Fl. T. c.

In garden-pots. Glasgow, Dr. J. D. Hooker. Pilcus 5-8 lincs across, fawn-colourcd.
264. A. (Hebeloma) obscurus, P. ; pilcus somewhat fleshy, flatly campanulatc, umbonatc, lougitudinally fibrillose; disc scaly; stem stuffed, somewhat flexuous, fibrillosc, violet-brown ; gills adnexed, meinate, crowded, ventricosc, olive, then brown.

On the uaked ground. East Bcrgholt, Dr. Badham. Pileus scarcely an inch across.
*** Pileus rimose; stem whitish, slightly tinged with the colour of the pileus, fibrillose.
265. A. (Hebeloma) fibrosus, Sow.; pilcus fleshy, thin, ob-
tusely campanulate, silky, even, at length eraeked; margin flexuous, broken; stem long, solid, striate, squamoso-floeeulose above; gills free, erowded, linear-laneeolate, dirty-white.Sow. $t .414$.

In fir-woods. Keynston, Dorsetshire, Miss Rackett. Fries refers A. repandus, Bull., to this speeies. Pileus 4 inches aeross. Stem 1 ineh thiek.
266. A. (Hebeloma) fastigiatus, $F r$.; pileus fleshy, thin, eonieo-eampanulate, longitudinally fibrous, craeked; stem solid, stout, rather twisted, finely fibrillose; gills erowded, free, yellow, then brownish-olive; spores rough. (Plate 8, fig. 4.)

In woods. Rare. King's Cliffe. June. Pileus 2 inehes aeross, yellow-brown. Stem attenuated upwards. Spores rough with little nodules.
267. A. (Hebeloma) Curreyi, B.; pileus eonvex, expanded longitudinally, fibrous, slightly eracked, not umbonate ; stem straight, attenuated upwards, finely fibrillose ; gills yellowish, then brownish-olive, free; spores perfeetly even.

In woods. Fineshade, Northamptonshire, Aug. 8. Closely resembling the last, but by no means umbonate. The stem is dark, and the spores, whiel are subeymbiform, perfeetly even.
268. A. (Hebeloma) rimosus, Bull.; pileus thin, fleshy, eampanulate, fibrous, expanded longitudinally, rimose; stem solid, firm, nearly smooth, bulbous, mealy above; gills free, somewhat ventrieose, brownish elay-coloured. (Plate 8, fig. 5.)

On the ground, in woorls. Extremely common. Pileus brownish, with a yellow tint. There are several varieties, in some of whieh the stem is white, in others coloured like the pileus.
269. A. (Hebeloma) auricomus, Batsch; small, thin ; pilens yellowish, striate, much eraeked ; stem fistulose; gills
fixed, ventrieose, dirty-white, changing to brown.-Batsch, f. 21.

In woods. Not uncommon.
270. A. (Hebeloma) treehisporus, B. ; pileus submembranaecous, convex, strongly umbonate, at first viscid, but spon dry and silky; stem slightly striate and mealy; gills ventrieose, emarginate, seareely adnate, pinkish-grey ; spores rough. (Plate 8, fig. 6.)

In woods, amongst fern. Not common. About 1 ineh aeross, tawny. The spores are like those of A. fastigiatus and lacerus.
**** Pileus not rimose; disc cven; stem polished, white.
271. A. (Hebeloma) sindonius, Fr.; pileus fleshy, thin, eonico-convex, gibbous, obtuse, elothed with velvety down; veil more or less appendiculate; stem with a distinct pith, at length hollow and smooth; gills attenuated, aduexed, lanecolate, dirty-white, beeoming brown.-Sow. t. 365 (a large form).

In moist shady places. Rarc. Pileus at length smooth.
272. A. (Hebeloma) geophyllus, Sow.; pileus somewhat fleshy, conieal, then expauded, umbonate, even, silky; stem stuffed, equal, rather firm, white ; veil fibrillose ; gills erowded, adnexed, white, then dingy, then earth-eoloured.-Sow. i. 124 .

On the ground, in woods. Extremely common. About an inch aeross. Pileus white, lilae, ete.
273. A. (Hebeloma) lucifugus, Fr.; pileus rather fleshy, convexo-plane, somewhat umbonate, elothed with little elosepressed fibres or seales; stem firm, solid, equal, smooth, somewhat pruinose above; gills nearly free, erowded, plane, of a dirty yellowish-white, then olive.-Pers. Ic. Pict.t. 15.f. 2.

On the ground, in woods. Not uncommon. Pilcus about an inch aeross, brownish or olive.

2. Cuticle smooth, forming a distinct pellicle.

274. A. (Hebeloma) testaeeus, Batsch; pileus flcshy, eampanulato-eonvex, obtuse, even, slightly viseid ; stems hollow, somewhat bulbous, flocculoso-fibrillose, pale, mealy above; gills attenuated, nearly free, laneeolate, erowded, pale, then ferruginous, aseending.-Batsch, f. 198.

In woods. Coed Coeh, Mrs. Wynne. Pileus 2-3 inches aeross, reddish. Smell very strong. This is the only speeies of the veiled Fastibiles which has oecurred in this eountry.
275. A. (Hebeloma) crustuliniformis, Bull. ; pileus fleshy, eonvex, at length plane, rather waved, smooth, somewhat viseid; stem stuffed, firm, somewhat bulbous, dirty-white, elothed more or less with little floeeose scales; gills erowded, thin, annexed, dirty-white, then of a watery cinnamon; edge erenulate, guttate. (Plate 9, fig. 1.)-Bull. t. 308, 546.

In woods. Extremely eommon. Forming large rings. Smell like that of the flowers of the eommon laurel. A. planus, Sow., is apparently a small form of this speeies.
276. A. (Hebeloma) longieaudus, P.; pileus fleshy, eonvex, expanded, even, smooth, viscid; stem rather hollow, brittle, nearly equal, white, mealy above; gills emarginate, erowded, serrulate, dry, of a pale elay-colour. (Plate 9, fig. 2.)

In woods. Not eommon. Pileus pale.

Subgenus 18. Flammula.-Stem fleshy; gills adnate or decurrent.

27\%. A. (Flammula) seambus, Fr .; pileus rather fleshy, eonvexo-plane and sliglitly depressed, floccoso-villous, viscid
in moist weather ; stem short, ineurved, white, floceulose, and veiled, attenuated below; gills subdccurrent, of a ycllowish elay-eolour.

On larch. Flintham, Notts. Pileus about $1 \frac{1}{2}$ ineh aeross. Stem at length ferruginous. Bolton's t. 55 is refcrred by Fries to A. vinosus, but it is surcly Paxillus involutus.
278. A. (Flammula) lentus, P.; pilcus floshy, convexoplane, cren, viscid, at first clothed with a few evanescent sealcs; stem long, equal, sealy; gills adnate, dirty-white, then elay-eoloured.

On stumps. Not uneommon in the north. Pilcus and stem dirty-white.
279. A. (Flammula) flavidus, Schceff.; pileus fleshy, eon-vexo-planc, equal, smootl, moist ; stem somewhat hollow, fibrillose, yellow, then ferruginous; gills adnate, ycllow, then ferruginous.-Schceff. t. 35.

On trunks of fir-trees, etc. Abundant on lime. Northamptonshire. Remarkable for its fine yellow tints. Spores bright ferruginous.
280. A. (Flammula) inopus, Fr.; pilcus thin, fleshy, con-vexo-planc, moist, smooth; stem fistulose, thin, flexuous, eloscly fibrillosc, at length briek-red bclow; gills adnate, crowded, linear, of a dingy whitish-yellow.-Bolt. t. 148.

On pinc-trunks. Introdueed on the authority of Fries's quotation of Bolton. He also thinks that A. hybriclus, Sow., may be the same specics.
281. A. (Flammula) hybridus, Fr.; pileus fleshy, hemispherical, expanded, obtuse, smooth, even, moist; stem stuffed with soft tissuc, attenuated above, tawny, elothed with a whitish veil which forms a ring; gills adnate, lather crowded, pale yellow, inclining to tawny.

On fir-stumps. Gopsall, Rev. A. Bloxam. This does not
seem to be A. hybridus, Sow., whose affinities are doubtful. It is the only speeies of the pine-borne Flammulce that las been sent me as British, but it is probable that one or two occur in Scotland.

Subgenus 19. Natcoria.-Stem cartilaginous externally; margin more or less convex ; pileus inflexed.

* Pileus smooth; spores of a bright ferruginous tint.

282. A. (Naucoria) Cucumis, P.; pileus slightly fleshy, broadly eampanulate, smooth, turning pale; stem slender, firm, smooth, dark-brown, thiekened at the tip, subpruinose; gills slightly annexed, ventricose, pallid, saffron-ycllow.Sow. $t .344$.

Amongst sawdust, ete. Not very uneommon. The darkbrown stem, buff gills, and fishy smell, easily distinguish this eurious species.
283. A. (Naucoria) Centunculus, Fr.; pileus slightly fleshy, eonvexo-plane, dingy-greenish, then yellowish, turning pale; stem fistulose, elothed with white down at the base, sprinkled with white meal above, cinercous-yellow, as well as the broad, thick, adnate, seeeding gills.

On rotten wood. Rare. Apethorpe. Pileus only a few lines across. Gregarious.
281. A. (Naucoria) horizontalis, Bull.; pileus slightly fleshy, plano-convex, obtuse, even, smooth, watery-eimnamon, as well as the very short, ineurved, naked stem, and rounded, free, plane gills.-Sow. t. 341 .

On trunks of elms. Rare. Burghley Park, ete. Pileus only a few lines broad. Habit like that of A. corticola.
285. A. (Naueoria) nuceus, Bolt.; pileus submembranaeeous, globoso-eampanulate, umbilicate, dotted ; margin ineurved, somewhat lobed; stem slender, fistulose, silky, white ;
gills attenuated, adnate, ascending, somewhat lobed, cinna-mon.-Bolt. t. 70.

On the ground, amongst fir-trees, Bolton. I have ncver seen this species. Pileus scarcely an inch across, pale chestnut.
286. A. (Naucoria) melinoides, $F r$.; pileus slightly fleshy, convexo-plane, obtusely umbonatc, smooth, moist ; stcm hollow, rather thick, pruinose above, white at the base ; gills adnate, broad, triangular, toothed, honey-coloured. (Plate 9, fig. 3.)

On lawns. Very common. Pilcus about an inch across, ycllowish.
** Pileus smooth; spores brownish-ferruginous.
287. A. (Naueoria) vervacti, Fr.; pileus flesly, convexoplane or umbonatc, smooth, viscid, shining when dry; stem stuffed, then hollow, attenuated, smooth, stiff, dirty-white, rootless; gills adnate, with a dccurrent tooth, crowded, then ventricose, pallid, then ferruginous-brown.

In meadows, gardens, etc. Bromley, Mr. Sparkes. Probably not uncommon. Pileus ycllowish.
288. A. (Naucoria) pediades, Fr. ; pilcus slightly fleshy, convexo-plane, obtuse or depressed, dry, at length opaque; stem eontaining a distinct pith, somewhat flcxuous, slightly silky, ycllowish, somewhat bulbous at the base; gills adnexed, broad, somewhat distant, brownish, then dirty-cinnamon.

In pastures. Crauford, Middlesex, Mr. J. Graham. Probably not uncommon.
289. A. (Naucoria) semiorbicularis, Bull.; pileus slightly flcshy, hemispherical, expanded, even, smooth, somewhat riseid; stem slendcr, tough, nearly straight, palc ferruginous, shining, eontaining a distinct scparable pith; gills adnate, very broad, crowded, pallid, then ferruginous. (Plate 9, fig. 4.)

On lawns and pastures. Summer and early autumn. Extremely common. Often confounded with A. semiglobatus.
290. A. (Naueoria) inquilinus, F_{r}.; pileus submembranaeeous, convexo-planc, smooth, slightly striate, hygrophanous, somerhat flcshy in the eentre; stem short, fistulose, tough, dark-brown, attenuated downwards; gills triangular, convex, adnato-deeurrent, seareely crowded, brownisl-ferruginous.

On ehips, in woods, gardens, etc. Royal Botanie Gardens, Regent's Park, etc. Pileus a few lines across, yellowish or tan-eoloured.
*** Pileus flocculose or squamulose.
291. A. (Naucoria) furfuraceus, P. ; pileus slightly fleshy, eonvexo-plane, obtuse and depressed, moist, hygrophanous, at first elothed with silky evaneseent seales; stem fistulose, floceulose, rigid, pale ; gills adnate, decurrent, rather distant, cinnamon.

On chips, ete. Extremely common. Pileus reddish-brown, often nearly white when dry.
292. A. (Naucoria) erinaceus, Fr .; pileus slightly fleshy, eonvex, somewhat umbilieate, elothed with seales eonsisting of faseieulate hairs; stem slender, fistulose, short, ineurved, hairy ; gills adnate, rather crowded, entire.-Sow. t. 417.

On dead stieks. Rare. Southwiek, Northamptonshire, ete. Pilcus half an ineh aeross, bright brown, as well as the stem.
293. A. (Naucoria) siparius, Fr.; pileus slightly fleshy, obtuse, elothed with downy seales, as well as the stuffed stem, whieh is pruinose above ; gills broad, adnate, somewhat distant, floccose at the edge.

On soil and eaddis-eases at the edge of a pond. East Bergholt, Dr. Badham. Resembling the last, but not so bright in eolour.

Subgenus 20. Galera.-Stem externally subeartilaginous ; pileus more or less eampanulate ; margin straight.
294. A. (Galera) reticulatus, P.; pilcus slightly fleshy, eampanulato-cxpanded, viscid, rough with a network of veins; margin striate ; stem brittle, fibrillose, white; gills frec, ventricose, erowded, of a yellow-ferruginous tint. (Plate 9, fig. 5.)

On dead wood. Rarc. Northamptonshirc. Pileus pale violet. Care must be taken to distinguish this from such species as A. phlebophorus. The affinities of A, pilipes, Sow., are altogether doubtful.
295. A. (Galera) lateritius, Fr . ; pilcus submembranaccous, acorn-shaped, then conical, even, lyygrophanous; stem tall, brittle, straight, attenuated upwards, and frosted with white meal; gills linear, nearly free, very narrow, tawny-ferruginous.-Fl. Dan. t. 1816. f. 2.

In rieh pastures. Rare. Fineshade, Northamptonshire. Pileus and stem more ferruginous than in tlie next.
296. A. (Galera) tener, Schceff.; pilcus submembranaccous, conico-campanulate, obtuse, liygrophanous; stem straight, brittle, slining, ncarly of the same colour; gills adnate, crowded, ascending, rather broad, cinnamon.-Sow. t. 33.

Rieh pastures, dungy ground, etc. Extremely common. Pileus nearly white when dry, tawny when moist. There is another distinct species with a more conical pilcus, which is minutely rivulose, with a suleate margin, and smaller spores, which for the present I refrain from naming.
297. A. (Galera) ovalis, F.; pileus submembranaccous, ovali-campanulate, even, hygrophanous; stem straight, equal, slightly striate, nearly of the same colour; ring fugitive; gills nearly frec, ventricose, very broad, ferruginous.-Bull. t. 552. f. 1 .

On dung. Rare. A larger spccies than the last. Pileus dusky-ferruginous.
298. A. (Galera) confertus, Bolt.; pilcus submembranaceous, acutely conico-campanulatc, smooth, hygrophanous; stem slender, silky, shining, naked; base equal, decply rooting; gills slightly adnexed, rather distant, white, then brownish-ochraceous.-Bolt.t. 18.

In stoves. Rare. I have not met with this species. Densely crowded.
299. A. (Galera) sparteus, Fr .; pileus membranaccous, campanulato-convex, then cxpanded, hygrophanous, dry, even, smooth; stem thin, flexiblc, smooth ; gills adnatc, crowded, plane, cinnamon.-Bolt. t. 51.f. 1.

Amongst moss, in mcadows. Rare. Pilcus about half an inch across, einnamon, tan-coloured when dry.
300. A. (Galera) embolus, Fr.; pilcus membranaceous, campanulate, obtuse, radiato-striatc, hygrophanous; stcm quite smooth, shining, thickened upwards.; gills thick, very distant, aduate, triangular.

Amongst heath. On Moelfre-uchaf, Denbighshire. Pilcus tawny when moist, ochraceous when dry. Tufted.
301. A. (Galera) Hypnorum, Batsch; pileus membranaceous, eampanulatc, with frequently a central papilla, smooth, striate, hygrophanous; stem thin, flexuous, of the same colour, pruinose above; gills aduatc, rather distant, broad, at length plane, cinnamon-ycllow.-Sow. t. 282.

Amongst moss. Extremely common. Ycllowish in every part. Requires to be cautiously distinguished from small A. melinoides. Attend to the difference of the margin.

Subgenus 21. Crepidotus.-Pileus exeentric; spores not white.
302. A. (Crepidotus) alveolus, Lasch; pileus fleshy, soft,
latcral, obovate, and waved, opaque, contraeted and tomentosovillous behind; gills crowded, determinate, broad, clay-brown.

On old stumps. King's Cliffe. Pileus brownish-ochraccous. Nearly allied to the next, but not so soft and watery.
303. A. (Crepidotus) mollis, Scheeff.; pilens subgelatinous, flaccid, even, smooth, turning pale; stem obsolete; gills crowded, linear, dirty-white, then watery-cimnamon. (Plate 9, fig. 6.) -Huss. i. t. 74 .

On old stumps. Common. Pileus $1 \frac{1}{2}-3$ inches across, pale.
304. A. (Crepidotus) haustellaris, $F r$.; pileus slightly fleshy, reniform, even, slightly villous; stem lateral, attenuated upwards, villous, white ; gills rounded, nearly free, brownish-cinnamon.-Batsch, f. 121.

On dead trunks. Rare. Not observed since the time of Withering.
305. A. (Crepidotus) Rubi, B. ; pileus fleshy, elothed with very minute crystalline meal ; stem short, incurved, solid, strigose at the base; gills adnato-decurrent, greyish, then umber, slightly ventrieose. (Plate 9, fig. 7.)

On dead bramble, etc. Rare. Pileus half an ineh across, yellowish or livid-grey. Spores umber.
306. A. (Crepidotus) chimonophilus, B. and Br.; white ; pileus eonvex, rather thick, villous; stem very short or obsolete; gills distant, attenuated behind.

On small dead branches of Pyrus torminalis. Beneficld, Northamptonshire. Spores pale yellow-brown. Pileus a quarter of an inch across. Margin inflexed.
307. A. (Crepidotus) variabilis, P.; pileus submembranaceons, resupinate, then reflexed, clothed with white down; gills rather closc, white, then rusty-red, at length palc-cinnamon. (Plate 10 , fig. 1.)-Huss. i. $t .50$.

On stieks, dead furze, ete. Extremely eommon. Easily known by its reddish gills, whieh resemble in colour those of Hyporhodii.
308. A. (Crepidotus) depluens, Batsch; pileus submembranaeeous, resupinate, then reflexed, somewhat eonchate, elothed with white down behind ; gills broad, erowded, grey, then reddish.-Batsch, f. 122.

On the ground, in stoves, ete. Not eommon. Whitish when dry.
309. A. (Crepidotus) byssisedus, P.; pileus submembranaecous, resupinate, then reflexed, nearly plane, pruinose with greyish down ; stem ineurved ; gills broad, dirty-white, inclining to einereous.-Pers. Ic. and Desc. t. 14. f. 4.

On the ground. Rare. Spores irregular, as in many of smaller Hyporhodii.
310. A. (Crepidotus) Pezizoides, Nees; pileus sessile, thin, eup-shaped, then reflexed, mealy, subtomentose ; gills meeting in the eentre, rather distant, olive-brown, then tawny.

On rotten branehes. Rare. Found only in Warwiekshire, by Mr. Rufford.

Series 4. Pratella.-Spores brownish-purple or brown.

> Subgenus 22. Psalitiota. - Veil fixed to the stem, forming a ring.
311. A. (Pratella) eampestris, L.; pileus fleshy, eonvexoplane, dry, floceulose or squamulose; stem stuffed, even, white; ring placed about the middle of the stem, somewhat torn; gills free, approximate, ventricose, subdeliqueseent, flesh-eoloured, then brown. (Plate 10, fig. 2.)-Huss. i. t. 90.

In riel pastures. Common in most parts of the world, and extremely variable. Some of the forms are as follows:-
A. pratensis, Vitt.; distinguished by the small rufous seales of the pileus, and the flesh having a slight pink tinge. King's Cliffe. East Bergholt.
A. villaticus, Brond., aequires a large size, and is very sealy.

This has been found by Dr. Badham in Suffolk.
A. silvicola, Vitt., has a shining, smooth pilcus, and an elongated bulbous stem, and is not uneommon in woods.

The Mushroom of our gardens is also a distinet form, remarkable for its brownish hue and fibrillose or squamulose pileus. Mr. Buehanan has sent a very distinet bed-Mushroom, whiel has the merit of being exeellent in quality, and extremely prolifie. It has a white, opaque, nearly smooth, depressed pileus. He also sent at the same time a variety with a tall stem and somewhat bulbous base, approaching A. silvicola, Vitt.
A. vaponamus, Otto, has a broad, entire ring, while A. vaporarius, Vitt., has a brown pilose eoat, which eorers the stem as well as the pileus, and leaves transverse fragments on the stem as it elongates. Finally, a very distinet variety is represented in our Plate 10, fig. 3, which is rufous, like A. vaccinus, and whose flesh turns of a bright red when bruised. In this the gills are at first perfectly white, as in A. cretaceus. All of these might be proposed as distinet speeies, with almost as much justiee as the two or three whiel follow.
312. A. (Psalliota) arvensis, Schaff.; pileus fleshy, obtusely eonieo-eampanulate, then expanded, at first floecose, then smooth, even, or rivulose; stem hollow, with a floceose pith; ring broad, pendulous, double, the outer split in rays ; gills free, wider in front, at first dirty-white, then brown, tinged with pink. (Plate 10, fig. 4.) -Huss. i. t. 76, 77.

In meadows, forming large rings, and attaining an enor-
mous size. A coarse, but wholesome speeies, often turning yellow when bruised. There is also a sealy tarmy form.
313. A. (Psalliota) cretaceus, Fr.; pileus fleshy, campanulate, then eonveso-plane, even, nearly smooth or rivulose ; stem hollow, equally attenuated, even, white; ring simple, reflexed, and again aseending; gills remote, broader in front, for a long time white. (Plate 10, fig. 5.)

In meadows and stoves. Not eommon. Generally pure white. The stem is sunk inio the substanee of the pileus so as to make the gills remote. At first sight looks mueh like a Lepiota, as, for example, A. naucinus.
314. A. (Psalliota) silvaticus, Schaff.; pileus fleshy, thin, eampanulate, then expanded, gibbous, fibrillose or squamose; stem hollow, at first stuffed wirh delieate threads, unequal, dirty-white; gills free, erowded, thin, dry, reddish, then brown.-Schaff. t. 242.

In woods. Not uneommon. Pileus brownish. Smell strong.
315. A. (Psalliota) echinatus, Roth; pileus slightly fleshy, campanulate, then expanded, obtuse, at first densely pulverulent, then sealy; stem fistulose, equal, floeeoso-pulveruleut below the ring ; gills free, erowded, blood-red.

On peat-beds, in gardens. Rare. Milton, Northamptonshire, ete. Pileus about $1 \frac{1}{2}$ ineh aeross, of a dingy smoky purple, as is also the stem. Spores sometimes colourless. A most eurious speeies.
316. A. (Psalliota) versicolor, With.; pilcus fleshy, eou-vexo-plane, seurfy, seales of the dise crowded; stem spongy, bulbous, dirty-white, inelining to brown; ring persistent; gills deeurrent, pallid, then reddish-brown.

Edgbaston. Pilcus greenish-brown. This has not been recognized sinee the time of Withering.
317. A. (Psalliota) æruginosus, Curt.; pileus fleslyy, con-vexo-plane, somewhat umbonate, clothed with grcen cvanescent mucus ; stenı hollow, cqual, scaly and fibrillose below the ring, tinged with bluc; gills adnate, soft, brown, tinged with purple.-Fl. Lond. t. 309 ; Huss. i. t. 35.

In meadows, ete. Vcry common. Pilcus 3 inehes aeross, at first scaly with fragments of the veil, dingy-ycllow when the green slime has vanished.
318. A. (Psalliota) albo-cyaneus, Desm.; pilcus flcshy, thin, umbonate, even, viscid, livid, then whitish; stem slender, hollow, flexuous, even, whitish; ring incomplete; gills attenuato-affixed, whitish flesh-eolour, then brownish-purple. —Pers. Myc. Eur. t. 29.f. 2, 3.

In mcadows, and on dung. Not uneommon. Sometimes with A. aruginosus, of which it is possibly only a raricty.
319. A. (Psalliota) melaspermus, Bull.; pilcus fleshy, con-vexo-planc, obtuse, soft, cren, smooth, slightly viscid ; stem hollow, cqual, smooth, white, as well as the membranaceous ring ; gills slightly adncxed, ventricosc, crowded, pallid, then violct-black.-Bull. t. 540.f. 1.

In meadows and woods. Rarc. Cocd Coch. Resembling A. precox, but with different-colourcd spores and gills.
320. A. (Psalliota) squamosus, Fr.; pilcus fleshy, thin, eonvexo-planc, somewhat viscid, sprinkled with superficial concentrie scalcs; stem long, slender, subfistulose, villososquamose below the distant ring; gills adnatc, crowded, at length black, cdge whitish. (Plate 10, fig. 6.)

In woods. Not common. Varying in the nature and number of the scales on the stem and pileus. A bcautiful species when well-grown.
321. A. (Psalliota) stercorarius, $F r$.; pilcus slightly flesly, hemispherical, then expanded, smooth, even, somewhat viscid,
as well as the elongated stem, which is at first floceulose, and eontains a distinet pith; gills adnate, broad, white, then umber or olive-blaek.

On dung. Northamptonshire. Probably uot uneommon. Pileus yellowish. Often confounded with the following, which has a fistulose stem.
322. A. (Psalliota) semiglobatus, Batsch; pileus slightly fleshy, hemispherical, even, glutinous, and yellowish, as well as the fistulose, slender, smooth, straight stem ; gills broad, adnate, plane, elouded with black.-Grev. t. 344; Huss. i. t. 39 .

On dung. Extremely common. Said to be poisonous.
Subgenus 23. Hypholoma.-Veil woven into a fugacious web, which adheres to the margin of the pileus.
323. A. (Hypholoma) sublateritius, Fr.; pileus fleshy, eonvero-plane, obtuse, discoid, dry, at length smooth; flesh compaet, dirty-white; stem stuffed, fibrillose, attenuated downwards, ferruginous; gills adnate, crowded, white, then dingy-olive.-Huss. i. $t .60$.

On old stumps, in woods. Common. Pileus 3 inehes aeross, brick-red, variegated with yellow.
324. A. (Hypholoma) fascicularis, Huds.; pilcus flesly, thin, subumbonate, smooth ; stem hollow, thin, flexuous, fibrillose, ycllow, as well as the flesh of the pilcus; gills adnate, very erowded, linear, subdeliquesecnt, sulphur-eoloured, then greenish. (Plate 11, fig. 1.)-Huss. ii. $t .15$.

On old stumps, fallen trees, cte. Extremely common. Perhaps confounded oecasionally with A. conissans. Taste bitter.
325. A. (Hypholoma) dispersus, Fr.; pilcus slightly flesly, eampanulate, expanded, obtuse, even, silky near the margin from the veil ; stem thin, tough, subfistulose, silky, brown at the
hase ; gills thin, adnate, somewhat ventrieose, crowded, pallid straw-eolour, then elonded.

On stumps and on the ground, in pine-woods. Mossburnford, Jerdon. Coed Coch. Either seattered or faseieulate. Pileus $1 \frac{1}{2}$ inch aeross, tawny.
326. A. (Hypholoma) laerymabundus, Fr.; pileus fleshy, eampanulato-eonvex, obtuse, spotted with innate hairy seales; flesh white, as well as the hollow, fibrilloso-squamose stem, whieh is slightly thiekened at the base; gills adnate, seeeding, white, then brown-purple.

On trunks of trees, and on the ground. Pileus not hygrophanous, as in the next.
327. A. (Hypholoma) velutinus, P.; pileus somewhat fleshy, ovate, then expanded, gibbous, fibrillose, lygrophanous, at length nearly smooth, fleshy and hollow, equal, fibrillose, striate ; stem yellow-brown ; gills truneato-aduexed, rentricose, seareely erowded, brown, then umber, studded with drops of moisture. (Plate 11, fig. 2.)

On stumps of trees. Extremely common. Very variable in size, but generally larger than the foregoing.
328. A. (Hypholoma) appendiculatus, Bull.; pileus ear-noso-membranaceous, ovate, expanded, smooth, hygrophanous, when dry wrinkled and sparkling with atoms; stem fistulose, equal, smooth, white, pruinose above ; gills somewhat adnate, erowded, dirty-white, then rosy-brown. (Plate 11, fig. 3, 4u.)

On dead stumps. Extremely common. Veil attached in patehes to the margin.
329. A. (Hypholoma) Candollianus, $F r$.; pilens somewhat fleshy, eampanulate then convex, expanded, obtuse, smooth, hygrophanous; stem hollow, brittle, subfibrillose, white, striate above; gills rounded, adnexed, erowded, violet, then brownish-eimamon.-Fl. Dan. t. 774 .

On dead stumps. Rare. King's Cliffe. I have not seen it elsewhere.

Subgenus 24. Psilocybe.-Veil, if present, not forming a ring. Margin of pileus at first incurved.
330. A. (Psilocybe) spadieeus, Schaeff.; rigid; pileus fleshy, eonvexo-plane, obtuse, even, moist, hygrophanous; stem hollow, tough, pallid, even above; gills rounded behind, adnexed, dry, erowded, white, then rosy-brown.

On dead stumps, on the ground, ete., in woods. Very eommon. A variable species.
331. A. (Psilocybe) cernuus, Miill.; pileus slightly fleshy, eampanulato-eonvex, expanded, smooth, hygrophanous, minutely wrinkled when dry; stem flexuous, smooth, white, pruinose above, fistulose; gills adnate, slightly ventricose, seareely erowded, cinereous, white at first, then brownish-blaek.-Fl. Dan. t. 1008.

On ehips, deeayed woorl, ete. Apethorpe. Pileus pallid. This has no veil.
332. A. (Psilocybe) Fœnisecii, P.; pilcus slightly fleshy, eampanulate, expanded, obtuse, pallid when dry, even, smooth, as well as the fistulose, rootless, pallid-rufous stem; gills adnate, ventricose, widely emarginate, seareely erowded, brown-ish-umber. (Plate 11, fig. 5.)-Huss. i. t. 39.

Amongst grass, in fields and gardens. Extremely common. Pileus when moist dark-brown. Attention must be paid to the colour of the spores, or this species will be sought for amongst the Pancoli.
333. A. (Psiloeybe) coprophilus, Bull.; pilcus slightly fleshy, hemispherieal, expanded, then umbonate, at length smooth, as well as the somewhat fistulose stem, whieh is
attenuated above and pruinose; gills broad, areuato-subdeeurrent, livid-brown.-Bull. t. 566. f. 3.

On dung. Rare. Nortlamptonshire. Pileus at first white and downy, elothed with little white superfieial seales, brown, at length smooth and umber.
334. A. (Psilocybe) bullaceus, Bull.; pileus slightly fleshy, hemispherical, expanded, smooth, at length umbonate, striate halfway up; stem short, fistulose, equal, fibrillose; gills aduate, triangular, plane, crowded, ferruginous-brown.-Bull. t. 566. f. 2.

On liorse-dung. Not uneommon. Pileus three-quarters of an inch across, bay when moist, tan-coloured when dry. This is probably A. stercorarius, Engl. Fl.
335. A. (Psilocybe) physaloides, Bull.; pilcus slightly fleshy, eanpanulate, expanded, even, rather viseid; stem fistulose, flexible, elosely fibrillose, bright brown at the base; gills crowderl, decurrent, subferruginous.-Bull.t. 566.f. 1 .

On the walls of the sewage-filtering apparatus, Croydon.
336. A. (Psilocybe) areolatus, Klotzsch; pileus subearnose, eonvex, clothed with minute fibrillæ; cuticle cracking into nearly square patches; stem fistulose, fibrillose, dirtywhite; gills adnate, umber, at length black; edge white.

In gardens. Glasgow, Klotzsch. This is nearly allied to A. tegularis, Schum. Pileus ochraceous or brown.
337. A. (Psilocybe) semilanceolatus, $P r$.; pileus submembranaceous, acutcly conical, almost cuspidate, moist, viscid, slightly striate; stem tough, flexuous, pallid, smooth, containing a pith; gills adnexed, aseending, purple-black.-Sow. t. 240.f. 1-3.

In rieh pastures. Common. This is A. callosus, Eng. Fl., a species now divided into two.

Subgenus 25. Psathyra.-Veil none, or not forming a ring. Pileus conical or campanulate ; margin at first straight.
338. A. (Psathyra) conopilus, P.; pileus submembranaecous, eampanulate, umbonate, slightly wrinkled, turning pale; stem tall, attenuated upwards, smooth, shining with a silvery lustre; gills slightly adnexed, erowded, brownish-purple. -Jungh. in Linn. v. t. 6. f. 11.

In gardens. Rare. King's Cliffe. Pileus at first dirtywhite, 2 inches aeross ; stem 4-6 inehes high.
339. A. (Psathyra) corrugis, P. ; pileus submembranaeeous, eampanulate, umbonate, slightly wrinkled, smooth, turning pale; stem elongated, equal, smooth, white; gills sinuated, adnate, ventrieoso, violet-blaek.-Bull. t. 561. f. 1.

In pastures. Coed Coel. Pileus tinged with pink.
340. A. (Psathyra) bifrons, B.; pileus submembranaeeous, eampanulate, obtuse, oehraeeous-brown, tinged with red, turning pale-tan; stem straight, naked; gills pinkish-einereous, adnate ; margin white.-Engl. Fl. l.c. p. 114.

In ditehes. Rare. Northamptonshire. Pileus $\frac{3}{4}$ of an ineh aeross, elothed, when young, with a delieate, evaneseent veil.
341. A. (Psathyra) spadiceo-griseus, Scheeff.; pileus submembranaeeous, eonieo-eampanulate, then expanded, slightly umbonate, smooth, striate, hygrophanous ; stem firm, attenuated upwards, shining, white, striate above; gills adnexerl, rather erowderl, brown.-Scheeff. $t .237$.

On ehips, ete. Beeston, Notts. Pileus bright brown ; gills pale umber at first; stem umber within.
312. A. (Psathyra) fibrillosus, P.; pileus submembranaecous, eampanulato-convex, then expanded, slightly striate, at first fibrillose; stem elongated, very brittle, white, fibril-
loso-squamose ; gills adnate, plane, very broad behind, purpleblaek.

On the ground, in woods. Rare. Pileus livid, white when dry. The gills in my specimens are 3 lines broad, and nearly equal throughout, so that they must be considered as belonging to a distinet variety.
343. A. (Psathyra) gossypinus, Fr.; pileus submembranaeeous, eampanulato-expanded, tomentose, even, smooth; margin striate; stem tomentose, dirty-white ; gills adnexed, ventricose, white, then brown-blaek.-Bolt. t. 7l. f. l.

In woods, on the ground. Rare. Pileus of a pallid oehre. I believe A. xylophilus, Sow., which Fries refers to A. nolitangere, is merely a state of A. furfuraceus.

Series 5. Coprinarius.-Spores black; gills never becoming parple or brown.

Subgenus 26. Paneolus.-Veil, when present, interwoven. Pileus rather fleshy, without strix; margin at first extending beyond the gills, which are clouded.

> * Pileus viscid when moist, shining when dry.
344. A. (Panæolus) separatus, L.; pileus somewhat fleshy, eampanulate, obtuse, even, viseid; stem straight, shining, white, thiekened downwards, ring distant; gills fixed, eine-reous-blaek. (Plate 11, fig. 7.)

On dung. Extremely common. Pileus varying a good deal in size, semiovate, pale tan-coloured; stem soiled with the black spores.
345. A. (Panæolus) fimiputris, Bull.; pileus submembranaccous, eonieo-expanded, somerwhat gibbous, even, viseid ; stem slender, equal, smooth, pallid; gills livid-blaek. (Plate 11, fig. 6.)

On dung, and in pastures. Very common. Pileus leadcoloured, generally beaded with the veil.
346. A. (Panæolus) Phalænarum, Fr.; pilcus somewhat fleshy, campanulato-convex, obtuse, cven, smooth, viscid ; vcil appendiculate, fugacious; stem equal, rather firm, nearly nakcd, at length pale rufous; gills adnexed, broad, cinereous-black.-Bull. $t .58$.

On dung. Apcthorpc, Northamptonshire. Probably not uncommon. Pileus pale tan-coloured.
347. A. (Panæolus) retirugis, Batsch; pileus somewhat flcshy, at first subglobose, at length subumbonate, reticulated with raised ribs, and sparkling; veil torn, appendiculate; stem cqual, pruinose, of a pinkish purple; gills ascending, fixed, cincreous-black.-Batsch, f. 91.

On dung. Cocd Coch. Distinguished from A. corrugis by its black spores.
348. A. (Panæolus) campanulatus, L.; pilcus somewhat flcshy, campanulate, dry, even, smooth, somewhat slining; stem equal, straight, rufous, striate above ; gills fixed, ascending, varicgated with grey and black.-Bull. t. 561. f. 2 L.

On rich soil, dung, etc. Common. Pileus brownish, tinged with rufous.
349. A. (Panæolus) papilionaceus, Bull.; pilcus somewhat fleshy, hemispherical, smooth, when dry rimoso-squamose; stem equal, even, dirty-white, pruinose above; gills broadly adnate, very wide, at lengtlı planc, blackish.-Bull. t. 561. f. $2 N, M$.

On rich soil, dung, ctc. Common. Pilcus whitish-grey.
350. A. (Panæolus) fimicola, Fr.; pilcus slightly flcshy, campanulato-convex, obtuse, smooth, opaque, marked near the margin with a narrow zonc; stem brittle, elongated, equal, pallid, pruinose above; gills broad, adnatc, varicgated with grey and dingy-brown.-Bolt. t. 66.f. 1.

On dung, rich pastures, etc. Not gathered since Bolton's timc.

Subgcnus 27. Psathyrella.- Veil not interwoven. Pileus membranaeeous; margin not reaching beyond the gills.
351. A. (Psathyrella) gracilis, Fr.; pileus submembranaccous, conical, slightly striate when moist, hygrophanous; stcm slendcr, straight, naked, pallid; gills broadly adnatc, rather distant, cinereous-black, edged with pale-rose.

On hcdge-bordcrs. Very common. Pilcus brownish, at length often tinged with pink.
352. A. (Psathyrella) hiascens, Fr.; pilcus membranaccous, campanulate, deeply sulcatc ; dise cven; stem straight, rigid, brittle, smooth, whitc ; gills aduatc, linear, rather distant, acute in frout, pallid, then black.-Bull. t. 552. f. 2 F .

Under hedges. Woodnewton. Pilcus 1 ineh high, $] \frac{1}{2}$ ineh across, sulcate up to the dise, palc dirty-ochraccous.
353. A. (Psathyrella) aratus, n.s.; pilcus membranaceous, campanulato-conic, rather acute, decply sulcatc; stem tall, thickencd at the basc, white, smooth, fistulose ; gills lanccolate, quite frec, purplish-black.

Under hedges. Woodncwton. Pileus 1 inch high, $\frac{4}{5}$ across, bright brown; flesh of the dise of the samc colour; stem 5 inches high. Allicd to A. hydrophorus, Bull., but clearly distinct.
354. A. (Psathyrella) atomatus, Fr.; pilcus submembranaccous, campanulate, obtuse, slightly striatc, hygrophanous, when dry rugulose, sparkling; stem brittle, white, mealy above; gills broad, adnate, cinereous-black.

About hedgc-borders, ctc. Very common. Pilcus at first brownish, then tinged with pink.
355. A. (Psathyrella) disseminatus, P.; pileus membra-
naccous, ovato-campanulate, furfuraceous, then naked, suleatoplieate, elanging eolour; stem somewhat flexuous, brittle, furfuraceous, then smooth ; gills adnate, broadly linear, dirtywhite, then black.-Sow. t. 166.

About the trunks of trees, and on the ground. Forming large tufts. Extremely eommon. Pileus a few lines only across. Approaching very near to Coprinus. A. membranaceus, Bolt., is too doubtful as to its affinities to admit of its being registered.

2. COPRINUS, $F r$.

Gills membranaeeous, deliqueseent. Spores blaek.

1. Pileus not plicato-sulcate.

1. C. comatus, Fr. ; pileus rather fleshy, eylindrical, obtuse, then expanded, soon torn up into broad, scattered seales; stem hollow, fibrillose, stuffed with a cottony web; bulb solid, rooting; ring moveable; gills frce, linear, white, then tinged with red.-Grev. t. 119 .

Sides of roads, pastures, etc. Common. Extremely variable in size. Eseulent when young. I believe that Bolt. t. 142 is a mere variety. I have found C. comatus at Abergele equally dwarf, and with a preeisely similar volvate ring.
2. C. sterquilinus, Fr.; pileus membranaeeous, conical, expanded, suleate, at first villous; dise rather fleshy, rough with seales; stem attenuated, fibrillose, solid, rootless, having a ring; gills free, ventrieose, purplish.-Mich. t. 83. f. 3.

On dung. Rare. King's Cliffe. About $1 \frac{1}{2}$ inch aeross.
3. C. atramentarius, Fr.; pileus rather fleslyy, ovate, at first irregular, spotted above with innate seales; stem firm, hollow, zoned within; ring abrupt, fugacious; gills free, ventrieose, white, then purplish-black. (Plate 12, fig. 1.)

About old stumps and on the naked soil in gardens. Very eommon. Often densely erespitose. Pileus of a dull, dingy white or ochre, slightly rugose, sometimes sparkling.
4. C. luridus, Fr . ; pileus submembranaecous, ovato-eonieal, irregular, smooth, viseid, even ; stem firm, solid, equal, brown ; gills free, ventrieose, blue-black,-Bolt, t. 25.

On the ground. Not found since the time of Bolton. Perhaps a mere state of the last.
5. C. fuscoscens, Fr .; pileus submembranaceous, ovatoexpanded, polished ; dise slightly fleshy, even or eraeked, sealy; stem hollow, brittle, eurved, slightly fibrillose, seareely annulate ; gills fixed; umber-blaek.

On dead stumps, Rare. Kilmory, Argyllshire, Lady Orde.
6. C. picaceus, Fr.; pilcus membranaecous, ovato-eampanulate, striate, variegated with broad, white, superfieial seales; stem hollow down to the rootless bulb, brittle, smooth; gills free, ventrieose, einereous-blaek.-Sow. $t, 170$.

On roadsides. Rare. Smell often extremely disagreeable. Pileus 2 inehes or more aeross, pied.
7. C. aphthosus, Fr .; pileus membranaccous, ovato-campanulate, free from striæ, sprinkled with superfieial, floeeose seales, then naked; stem hollow, equal, twisted, fibrillose; gills adnate, linear, white, theu blaek.-Bolt. t. 26.

In hollow trees, eellars, ete. Not eommon.
8. C. extinctorius, $F r$.; pileus submembranaccous, elavatoeampanulate, straight, margin striate, at first sprinkled with floeeose seales; stem hollow, smooth, attenuated from the rooting base; gills reaeling the stem, laneeolate, white, then brownish-black.-Bolt. t. 24.

On the ground. Bolton's plant has not exaetly the same habit as Bulliard's, t. 437. f. 1, but Fries considers it identical, and it is perhaps a erespitose variety.
9. C. fimetarius, $F r$.; pileus submembranaeeous, clavatoeonic, soon torn and revolute, at first rough with white floccose seales, then naked, longitudinally rimoso-suleatc, even at the apex; stem squamulose, thiekened at the basc, solid; gills free, black, laneeolate, then linear and flexuous.

On dungheaps. Extremely common. A variable species. Sow. t. 262 represents one of the varieties. Sometimes there is a root as long as the stem. I have this statc and a beautiful drawing from Mr. Browne, of Hitchin.
10. C. tomentosus, $F r$.; pileus submembranaceous, eylindrical, then eonie floeeuloso-tomentose, at length longitudinally rimose; stem hollow, rather short, equal, velvety ; gills free, linear, brownish-blaek.-Bolt. t. 156.

On dung and in rieh pastures. Not uneommon. The eoating sometimes peels off in broad patches.
11. C. niveus, $F r$.; pileus submembranaeeous, oval, then eampanulate, floccoso-squamulose, and densely furfuraceous; stem fistulose, equal, villous, white; gills somewhat adnate, narrow, black.-Sow. t. 262.

On horse-dung, ete. Very eommon. Known at onee by the white, mealy coat. Sometimes appearing with the first summer rains.
12. C. micaceus, $F r$.; pileus submembranaceous, oval, then eampanulate, rather irregular, striate, sparkling, at length naked, rimoso-sulcate ; stem hollow, finely silky, dirty-white ; gills adnexed, laneeolate, dirty-white, then partially shaded with brown.-Sow. t. 261.

About old stumps. Extremely common. Remarkable for the sparkling particles with whieh it is sprinkled. Pileus tawny, often densely erespitose.
13. C. radians, Fr.; pileus membranaceous, orato-campanulate, sparkling, disc grauuloso-squamose, margin striate;
stem equal, naked, sloort, springing from radiating floeci ; gills reaehing the stem, nearly linear, white, then violet-black.Sow. t. 145. Desm. Ann. d. Sc. Nat. xiii. t. 10. f. 1.

On plaster-walls. Sometimes very abundant. When young it looks like a little Lycoperdon.
14. C. deliqueseens, F_{r}.; pileus submembranaceous, ovatoeampanulate, then expanded, rather irregular, broadly striate, smooth, top studded with imate papillæ; stem hollow, smooth, veiled; gills at length remote, linear, dingy-black.-Bull. t. 558. f. 1.

On old stumps. Not common. Sometimes confounded with C. atramentarius.
2. Pilcus gaping in the divection of the trama, hence plicatosuleate.
15. C. Hendersonii, F_{1}. ; pileus minute, at first eylindrieal, then ovali-eampanulate, at length plane, smooth, striate halfway up; stem filiform, at length smooth, with a small, ereet, entire ring ; gills narrow, black. (Plate 24, fig. 8.)

On hotbeds. Very rare. Milton, Norths. Looks like a small, annulate A. disseminatus. Pileus minutely grauulated under a lens.
16. C. maerocephalus, B. ; pileus at first eylindrical, then eylindrico-campanulate, sprinkled with pointed seales; stem dirty-white, fistulose, elothed with short, eottony down and loose fibres, strigose at the base; gills linear, perfeetly frec.

On putrid dung. Cotterstock, Norths. Pileus rather more than $\frac{1}{2}$ an inch across; scales adpressed or patent; fibrils of stem deflexed.
17. C. lagopus, $F r$. ; pileus very thin, cylindrieal, then eampanulate, elothed with white floeei, at length split, radiato-
sulcate, and revolute; stem very brittle, white, woolly; gills free, lincar, at length remote, distant.

On dung. Not uneommon. Remarkable for the dense, cottony eoat of the stem.
18. C. nychthemerus, $F r$.; pileus very thin, soon rimose, expanded, flocculoso-furfuraccous, then naked, furcato-striate; stem equal, flaccid, smooth, dirty-white ; gills free, narrow, at length black, at first crowded, then distant, remote.-Bull. t. j42. f. D. I.

On dung. King's Cliffe. Pileus grey, a few lines across.
19. C. radiatus, $F r$.; very dclicate; pileus clavato-eampanulate, tomentose, soon split, flattened, naked, plicato-radiate ; stem filiform; gills frce, distant, few in number.-Bull. 452. L. E. $-H$.

On dung, in meadows. Very common. Minutc.
20. C. domestieus, $F r$.; pilcus thin, ovato-campanulate, obtuse, split, undulato-sulcate, furfuracco-squamulose; stem attenuated, silky, white; gills fixed, crowded, linear, white, with a reddish tint, then brown-black.-Huss.

On damp carpets, ctc. Not uneommon.
21. C. ephemerus, $F r$. ; pilcus very delicate, ovali-clavate, then campanulate, split, radiato-sulcate, somew hat furfuraceous; dise raiscd, even; stem slender, cqual, pellueid, smooth; gills reaching the stem, distant, dirty-whiite, then brown and blaek. -Bull. t. 128.

Onl dunghills. Common.
22. C. plieatilis, Fr. ; pilcus vcry delicate, ovali-cylindrieal, soou expanded, split, sulcato-plicate, nearly smooth; disc broad, at length depressed, even; stem equal, smooth, white; gills adhering to a distinct collar, greyisl-blaek.-Curt. Lond.t. 200.

In pastures. Very common. Spores broadly cllintic, $\frac{1}{20} 0$ inch long.
23. C. Spragueii, B. and C.; very delicate; pilcus campanulate, then conical, tomentose, plicate; stem fistulose, palecinnamon; gills few, narrow.-Ann. of Nat. Hist. Oct. 1859.

In gardens. King's Cliffe, July 2, 1859. Spores narrow, subcymbiform, $\frac{1}{2500}$ inch long. I reccived this originally from New England. The difference between it and the last as regards the spores is very striking.
24. C. hemerobius, Fr.; pilcus very delicate, ovate, nearly even, expanded, campanulate, split, smooth, at length plicatosulcate; top rather prominent; stem elongated, attcnuated, smooth, pallid ; gills lincar, pallid, then black, adncxed to an obscure collar.-Bolt. t. 31.

On roadsides. Rarc.

3. BOLBITIUS, Fr.

Gills becoming moist; trama obsolcte; spores colourcd.

1. B. Boltonii, Fr.; pileus slightlyfleshy, viscid, membranaccous at the margin, at length sulcate; dise darkcr, somewhat depressed; stem attenuated, ycllowish; ring fugaeious, at first flocculose ; gills somewhat adnate, livid-yellow, then brown.-Bolt. t. 149.

On dung. Pileus yellow, turning palc. Spores brownish. I am not acquainted with this species.
2. B. fragilis, $F r$.; pileus submembranaccous, viscid, pcllueid; margin striatc; dise subumbonatc; stem attenuated, naked, smooth, yellow ; gills attenuato-adncxed, yellow, then palc-cinnamon.-Sow. t. 96 .

On dung. Common. Pilcus yellow, then whitish.
3. B. titubans, Fr.; pileus membranaccous, flattened out, pellucid, striate halfway up; stem slender, straight, slining, yellow; gills slightly adnexed, pallid, salmon-colourcd.-Sow. ८. 128 .

A mongst grass. Common. Pilcus yellow, but soon presenting the salmon-tint of the gills.
4. B. tener, B. ; very dclieatc ; pileus whitc, moist, conical, clongated; stcm whitc, bulbous at the base; gills attenuated behind, nearly frec, salmon-colourcd. (Plate 12, fig. 2.)

Amongst short grass on a lawn. Apcthorpe. At first looking like a dry specimen of A. tener.
4. CORTINARIUs, Fr.

Gills membranaceous, persistent; trama floccose. Vcil consisting of arachnoid threads. Spores rusty-ochre.*

Subgenus 1. Pilegmacium.-Pellicle of pileus viscid when moist.
Veil, and consequently the stem from which it springs, dry.

1. C. (Phlegmacium) caperatus, Fr. ; pileus fleshy, ovate, then expanded, obtuse, moist, incrusted with superficial white floeci; stem stout, smooth, squamulose at the top from the refleeted, membranaceous ring ; gills adfixed, scparating, serrate, crowded, elay-coloured.-Bot. of East. Borders, with a fig.

In woods. Very rare. Berwickshirc. Lancashire, Rev. H. H. Higgins. A large and noble species, of a bcautiful ycllow.
2. C. (Phlegmacium) varius, Fr.; pileus eompact, hemispherieal, flattened, even, viscid ; margin smooth ; Hlesh white; stcm short, solid, elosely floceulose, dirty-white ; gills erowded, emarginate, quite entire, purplish, then pallid-eimamon.Schaff. $t .42$.

In woods. Not common. King's Cliffe.

[^30]3. C. (Phlegmacium) cyanopus, Fr. ; pileus fleshy, hemispherieal, flattened, even, viseid; margin thin, smooth, of the same colour; flesh dirty-white; stem solid, violet, then white, naked above the thin veil ; bulb depressed, oblique; gills adnate, emarginate, broad, rather crowded, violet, turning pallid. -Sow. t. 223.

In woods. Pileus livid-brown, then tan.
4. C. (Phlegmacium) anfraetus, Fr. ; pileus fleshy, unequal, deeply plicate and undulated, viseid, shining when dry; stem stuffed, unequal, elosely fibrillose, violet above and veiled; gills areuate, affixed, erisped, rather distant, dingy-olive, then einnamon.

In woods. Rare. King's Cliffe. Pileus several inehes aeross, deep-bay in my speeimens, whieh I have named after a drawing sent me by Fries. The gills, however, are rather emarginate than areuato-affixed, and the whole plant, when young, is eovered with a white volva. Stem very thiek and bulbons at the base. In outward form the two are identieal.
5. C. (Phlegmaeium) multiformis, Fr.; pileus fleshy, convex, expanded, equal, smooth, viseid; flesh and fugaeious veil white ; stem solid, attenuated, elosely fibrillose, white, ehanging to yellow; bulb somewhat margined ; gills cmarginate, erowded, serrated, dirty-white, then elay-coloured, inelining to einna-mon.-Sow. t. 102.

In woods. Rare. Pileus yellowish. I have seen the bulb so margined as to give the impression of a volva like that of Ag. pantherinus.
6. C. (Phlegmacium) glaucopus, Fr . ; pileus compact, expanded, subrepand, viseid, then floceoso-squamose or fibrillose; flesh at length yellowish; stem stout, solid, striate, bluish, then yellowish, margined below; gills emarginate, broad, blue, then elay-eoloured, inelining to einnamon.-Huss.

In pinerroods. Rarc. Pilcus remarkable for a brown, raised zone near the margin, at length turning palc.
7. C. (Phlegmacium) callochrous, $F r$. ; pilcus flcshy, conycx, flattened, smooth, viscid, unchangeable; flesh compact, white ; stem solid, equal, fibrillose, white, changing to ycllow; bulb distinct, margincd; gills cmarginatc, crowded, scrrate, blue, changing to purple. (Plate 12, fig. 3.)

In woods. Not uncommon. Pilcus tawny.
8. C. (Phlegmacium) cærulescens, $F r$.; pilcus fleshy, convex, cxpanded, even, viscid; flesh soft, bluc, turning white as well as the solid, attenuated, naked stem; bulb margined ; gills adnexed, crowded, quitc cntirc, at first of a pure dark bluc.

In woods. King's Cliffe. Bristol, Dr. Stephens. Very beautiful, pilcus at first blue, spotted in my specimens from the presence of minute fibrils. Stem not always marginatc, rough above with the threads of the veil.
9. C. (Phlegmacium) purpurascens, Fr.; pileus compact, dilated, somewhat waved, virgatc, viscid ; flesh bluish; stem solid, blunt, fibrillosc ; bulb margincrl, cvancscent ; gills crowded, broadly cmarginate, bluc, then clay-coloured, inclining to cinnamon-purple when bruised.

Woods. Common. Pilcus about 3 inches across, not turning pale, bright brown, at length tawny. This species has somctimes, but not coustantly, a marginal zonc.
10. C. (Phlegmacium) turbinatus, Fr.; pileus flcshy, planc, then depressed, viscid, self-coloured, smooth, turning pale; flesh soft, white; stem stuffecl, nearly equal, shining, dirtywhite, marginato-bulbous; gills attcmato-adnatc, erowded, quite cntirc, reddish-grey, then ferruginous.

In woods. King's Cliffc. My specinens have the margin of the bulb so strougly developed as to appear volvate, like Ay. pantherinus. Pilcus yellow when dry, variable in width.
11. C. (Phlegmaeium) scaurus, Fr. ; pileus fleshy, equal, smooth, virgate or spotted, viscid, turning pale; margin thin, at length slightly striate; stem solid, marginato-bulbous, attenuated, striate, turning pale; gills attenuato-adnate, thin, erowded, purplish, then olive.

In woods. King's Cliffe. Pileus 3-4 inelies aeross, dingytawny. Stem purplish in my speeimens, with a red tinge on the edge of the bulb.
12. C. (Phlegmacium) prasinus, $F r$.; pileus compaet, equal, viseid, variegated with seale-like spots; stem solid, short, firm, marginato-bulbous, greenish, as well as the veil ; gills rounded, rather distant, yellow-olive.-Scheeff. t. 218.

In beceh-woods. King's Cliffe. Pileus 3 inehes aeross, greenish.

Subgenus 2. Mixacium.-Universal veil, and consequently the stem, viscid and polished when dry.
13. C. (Myxacium) collinitus, Fr.; pileus fleshy, eonvex, subplieate, flattened, obtnse, even, glutinous, shining; stem firm, eylindrieal, transversely sealy from the splitting of the floccose glutinous veil; gills adnate, elay-coloured and blue, then einnamon.-Sow. t. 9 .

In woods. Common. Pileus bright tawny, 3-4 inehes aeross. Sometimes the veil of the stem does not eraek.
14. C. (Nyxacium) elatior, Fr.; pileus eylindrieal, then expanded, viseid ; dise even, fleshy, otherwise membranaceous and plieato-rugose; stem elongated, soft, stout, attenuated at either end, sealy from the torn veil; gills adnate, very broad, eonneeted by veins, and rugose, bromnish-ferruginous.

In woods. Common. Pileus $3-4$ inehes aeross, varying in eolour, yellowish when dry.
15. C. (Myxacium) livido-ochraceus, B.; pileus plane,
submembranaccous, viscid, margin not striate ; stem attenuated at cither end, subsquamose, striate above the fugitive veil, stuffed with cottony fibres ; gills cinnamon, subadncxed, broad in front.

In woods. King's Cliffe. Coed Coch. Pileus 1 inch across, livid-ochre. Nearest to the smooth-stemmed form of C. collinitus.

Subgenus 3. Inoloma.-Pileus fleshy, dry, at first silky with scales or innate fibres, not hygrophanous ; stem bulbous.
16. C. (Inoloma) violaeeus, $F r$ r. ; dark-violet; pilcus fleshy, obtuse, villoso-squamose ; stem bulbous, spougy, villous, cine-reous-violet within ; gills broad, fixed, thick, distant.-Huss. i. i. 12 .

In woods. England and Scotland. Not common. Pileus 4. inehes or more across.
17. C. (Inoloma) eallisteus, $F r$.; yellow-tawny ; pileus flesly, convexo-plane, at length smooth, even, innato-squamulose; margin rather silky; flesh whitish-ycllow; stem elongated, bulbous, clothed with tawny fibres; gills adnate, floeeose, conneeted bchind.

In woods. Rare. My Ag. validus (sec Engl. Fl.) appears eertainly to be this species, agrceing with it not only in other respeets, but in the minute eharaeter of the gills adhering to the stem after they separate by a few flocei. The colours are nearly those of Ag . aureus.
18. C. (Inoloma) Bulliardi, Fr. ; pilcus fleshy, campanu-lato-conrex, even or squamulose, rufescent; stem short, firm, bulbous, vermilion below and adorned with similarly coloured fibres, white above ; gills hroad, adnexed, purplish, then ferrn-ginous.-Bull. t. 431. f. 3.

In woods. Not common. Bristol, Dr. Stephens. This
species is remarkable for the vermilion or briek-red base of the stem.
19. C. (Inoloma) bolaris, Fr.; pilcus fleshy, obsoletely umbonate, growing pale, variegated with innate pilose saffronred adpressed scales; stem stuffed, then hollow, nearly equal, squamulose, of the same colour as the pileus; gills crowded, subdecurrent, watcry-cimnamon. (Plate 19, fig. 1.)

Woods. Rarc. King's Cliffc. Argyllshirc, Mrs. Wynne. Varying in intensity of colour, sometimes mercly tinged with red, sometimes bright-red.
20. C. (Inoloma) pholideus, Fr.; pilcus fleshy, expanded, obtuscly umbonatc, fawn-coloured, densely clothed with inmate fasciculate blackish hairs ; stem attenuated, rough transversely with dingy-brown scales, even and violet above the veil ; gills subemarginate, crowded, violet, then clay-colomred, inclining to cimnamon.

In woods. King's Cliffc. Not common.
21. C. (Inoloma) sublanatus, Fr.; pilcus fleshy, campanulate, expanded, umbonate, tan-coloured, inelining to brown, clothed with little innate scales; stem bulbous, attenuated, smooth above, pallid, clothed below with brown scaly down; gills subadnate, scarcely crowded, olivaccous-yellow.-Sow. t. 224; Huss. ii. t. 22.

In woods. Rare. Pilcus variable in colour, sometimes shaded with olive.
22. C. (Inoloma) arenatus, P.; pilcus ficshy, convex, at first gibbous, granulated with little floccose scales, light rech, changing to brown; stem clavato-attenuated, clothed beyoud the middle with little brown seales, even and pale above; gills emarginate, ventricose, rather crowded, yellowish-cimnamon.Huss. i. t. 72 .

In woods. Not common. Cood Coch, Mrs. Wymne. This
cannot be distinguished safely from C. pholideus, except when the speeimens are young, in which state the colour of the gills is distinctive.

Subgenus 4. Dermocybe.-Pileus thin, silky with innate down, dry, not lyggrophanous; stem equal or attenuated, not bulbous.
23. C. (Dermocybe) ochroleucus, $F r$.; pilcus fleshy, conrex, obtusc, cven, nearly smooth, pallid-white; stem solid, firm, ventricose, white, fibrillose above, veiled ; gills adnexed, nearly free, crowded, dirty-white, then claycy-ochre.-Schofff. t. 34 .

In woods. Rare. Mossburnford, A. Jerdon, Esq. Pilcus about 2 inches across.
24. C. (Dermocybe) tabularis, Fr.; pileus fleshy, equal, soon flattened, flocculose, then smooth, brownish-clay, beeoming pale ; stem stuffed, tough, elastic, white, closcly fibril-loso-squamose or smooth ; gills cmarginatc, crowded, dirtywhite, then clay-coloured.-Bull. t. 431. f. 5.

In woods. A common species. Distinguished best from C. anomalus by the differently eoloured gills.
25. C. (Dermocybe) diabolicus, Fr.; pileus fleshy, thin, hemispherieal, obtusc, then gibbous, brownish, elothed with grey threads, at length smooth, ycllow-tawny; stem stuffed, rather slender, smooth, pallid, bluish above; gills somewhat emarginate, adnexed, crowded, dirty-white or cvanescent pale blue, then ochraeeous-einnamon.

In woods. South of England, C. E. Broome.
26. C. (Dermocybe) caninus, Fr.; pilcus flcshy, convex, flattened out, ubtuse, at length smooth, bright-rufous, changing colour' stem elavato-bulbous, clastic, closely fibrillose, pallid violet above; gills cmarginate, broad, lather distant, purplish, then einnamon.

In woods. King's Cliffe. Pileus variable in colour.
27. C. (Dermocybe) anomalus, Fr.; pileus fleshy, thin, eonvex, obtuse, then gibbous, dingy-rufous, whitish with cvancsecnt fibrils; stem somewhat stuffed, slender, attenuated, fibrillose, slightly scaly, pallid-violet; gills erowded, dente-decurrent, bluish or purple, then cinnamon. (Plate 12, fig. 4.) -Bull. t. 431. f. 2.

In woods. Very common. Pileus $2 \frac{1}{2}$ inehes aeross. A. araneosus, Sow. t. 384. f. 1, belongs to this, probably, and not to the next.
28. C. (Dermocybe) spilomeus, $F r$. ; pileus slightly fleshy, gibbous, dry, at length smooth, brownish, and changing eolour; stem rather hollow, slender, white, inelining to lilae, variegated with rufous or tawny scales; gills erowded, emarginate, narrow, bluish-lilae, at length cinnamon.

In woods. Not eommon. King's Cliffe. Bristol, Dr. Stephens. A. violaceus, Sow., is undoubtedly A. personatus.
29. C. (Dermocybe) sanguineus, Fr.; pileus fleshy, thin, obtuse, innato-sericeous or squamulose, dark blood-red, as well as the veil and thin, equal, at length bulbous stem ; gills crowded, rather broad, darker.-Sow. t. 43.

In woods. Not uneommon. Rcmarkable for its brilliant colour.
30. C. (Dermocybe) einnamomeus, $F r$.; pileus fleshy, thin, obtusely umbonate, einnamon-brown, silky with innate yellorvish fibrils, or squamulose; stem equal, slender, stuffed, then hollow, yellowish, as well as the flesh and veil; gills adnate, broad, erowded, shining.

In woods. A very common but variable species. Somctimes the gills are red.
31. C. (Dermocybe) uliginosus, n.s.; pileus campanulatoeonieal, then expanded, bright red-brown, very strongly um-
bonate, silky, sometimes streaked; flesh yellow-olive, then eimamon; stem flexuous, paler than the pileus; gills distant, adnate, with a tooth, yellow, then olive, then cinnamon.

In boggy woods, amongst Sphagnum, ete. King's Cliffe. Pileus not exceeding 2 inehes in diameter, of a beautiful redbrown (almost briek-red), and remarkable for its very strong but seareely aeute umbo.
32. C. (Dermocybe) raphanoides, $F r$. ; olive, then ehanging eolour; pileus fleshy, eampanulate, then expanded, gibbous, silky with innate fibrils; stem stuffed, firm, fibrillose, opaque, paler than the pileus, as well as the veil; gills ad-nato-ventrieose, rather erowded, olive, then einnamon.

In becch-and fir-woods. Highlands of Scotland, Klotzsch.
Subgenus 5. Telamonia.-Pileus moist, hygrophanous, smooth, or clothed only with evanescent threads; stem peronate (sheathed with the interwoven veil).
33. C. (Telamonia) bulbosus, Fr.; pileus slightly fleshy, eampanulato-cxpanded, smooth, bright-brown; dise fleshy, somewhat gibbous; stem stout, bulbous, pallid or paler than the pileus, sheathed with a white veil; ring imperfect; gills adnate, rather distant, opaque, einnamon.-Sow. t. 130.

In woods. Rare. Stem saffron-eoloured within.
34. C. (Telamonia) torosus, Fr. ; pileus fleshy, convex, expanded, obtuse, pale red-brown, whitish with squamules or fibrils, at length picreed, smooth; stem stout, sheathed with the white persistent veil, and furnished with a ring; veil at the apex violet; gills thiek, distant, very broad, purplish-umber, then einnamon.-Bull. t. 600. Q. R. S.

In woods. Not uneommon.
35. C. (Telamonia) ovornius, Fr.; pileus earnoso-membranaeeous, conieo-campanulate, expanded, smooth, purplish-bay,
ehanging to reddish-white, at length fibrillose and toru; stem stout, cylindrieal, soft, violct, scaly from the remains of the white vcil ; gills adnatc, very broad, distant, violct, inclining to purple.-Sow. t. 125.

In woods. Not uncommon.
36. C. (Telamonia) armillatus, F.; pilcus fleshy, campanulate, then expanded, innato-fibrillose and scaly, torn, bright red-brown; margin thin ; stem solid, clongated, bulbous, fibrillosc, reddish, girt with a red zone; gills fixed, very broad, distant, pallid, then dark-cinnamon.-Huss. i. t. 19; Bull. t. 527. f. 1.

In woods. Uncommon. A large specics, remarkable for the blood-red zonc on the stem. Mrs. Hussey's plant is the samc with Bulliard's, and both scem to mc to belong to this specics.
37. C. (Telamonia) limonius, Fr.; pileus fleshy, convexoplane, obtusc, smooth, tawny, at length rimuloso-squamulose; stem solid, firm, cqual, of the same colour, as well as the floccoso-squamose veil ; gills adnate and cmarginate, rather distant, ycllow, then tawny-einnamon.-Holmsk. ii. $t .40$.

In pine-woods. Scottish Highlands, Klotzsch.
38. C. (Telamonia) hinnuleus, Fr.; pileus carnoso-membranaecous, conico-eampanulate, then expanded, subumbonate, smooth, pale tawny-cinnamon, at length picreed; stcm stuffed, rigid, tawny, attenuated downwards, girt above with the white silky veil; gills subemarginate, distant, broad, then tawnyeinnamon, quite entirc.-Sow. t. 173 .

In woods. Extremely common. This is said to be distinguished from C. gentilis by its white vcil, but I fear this eharacter is not constant.
39. C. (Telamonia) brunneus, $F r$.; pileus campanulatc, flattened out, umber, naked, broken up into imnate fibrils near
the margin; umbo fleshy, obtuse; stem stuffed, elongated, attenuated upwards, elastie, brownish, marked with white streaks, girt with the brownish-white veil ; gills adnate, thiek, distant, purplish, then eimamon-umber.

In woods. Not observed sinee the time of Withering.
40. C. (Telamonia) periscelis, Weinm.; pilcus eampanulate, then eonvex, lilac and white, silky; umbo fleshy, membranaceous elsewhere ; stem equal, fibrillose, of the same colour; veil woven, brownish, forming an imperfeet ring; gills adnate, erowded, narrow, pallid, then obseurely ferruginous.

In bogs or under beeeh-trees. Bowood, C. E. Broome.
41. C. (Telamonia) psammocephalus, Fr .; tawny-einnamon ; pileus slightly fleshy, convexo-expanded, at length umbonate, furfuraceo-squamulose; stem stuffed, attenuated, squamulose, and sheathed with the continuous veil; gills adnate, arcuate, erowded.-Bull. t. 531. f. 2.

In woods. Not uneommon. King's Cliffe. Pileus about an inch aeross.
42. C. (Telamonia) ileopodius, Fr.; pileus slightly fleshy, eonvex, subumbonate, at first elothed with silky white threads, light reddish-yellow, then smooth and tan-eoloured, at length even and rimose; stem equal, slender, tawny without and within, sheathed with the pallid veil, naked above, fibrillosostriate; gills adnate, rather crowded, thin, inelining to ein-namon.-Bull.t. 586. f. 2 A, B.

In woods. Not uneommon. Very variable. Pileus $1-1 \frac{1}{2}$ inch aeross.

Subgenus 6. Hyqnocybe.-Pileus hygrophanous; stem distinet from the fibrillose veil, hence neither annulate nor floceososquamose.
43. C. (Hygrocybe) Armeniacus, $F r$; pileus subearnose,
convexo-plane, gibbous, even, smooth, tawny-einnamon, at length tan-coloured, shining; stem stufferl, comieo-attenuated, rigid, soft within, white, as well as the subperonate veil ; gills adnate, erowded, pallid, then tawny-einnamon.-Schoeff. t. 81.

In pine-woods. Bristol, Dr. Stephens.
44. C. (Hygroeybe) dilutus, F.; pileus somewhat fleshy, eonvexo-plane, sulumbonate, smooth, even, opaque, lightred; stem stuffed, then hollow, soft, pallid, thiekened at the base ; veil fibrillose ; gills emarginate, adnexed, broad, erowded, pale-einnamon.-Bolt. t. 10.

In woorls, Bolton. Not found sinee his time. Pileus about 2 inehes aeross.
45. C. (Hygrocybe) castaneus, Fr. ; pileus slightly fleshy, firm, eampanulato-eonvex, flattened out or gibbous, even, ehestnut ; stem eartilaginous, stuffed, then hollow, even, violet or pale rufous; veil white, fibrillose; gills fixed, ventrieose, rather erowded, violet, then ferruginous.-Bull. t. 268.

In woorls and gardens, on the naked gronnd. Common. A small speeies.
46. C. (Hygrocybe) Reedii, B.; pileus eouieal, then expanded and strongly umbonate, smooth, shining, persistently brown ; dise areolate; margin splitting; stem white, solid, fibrilloso-striate, slightly bulbous; veil fibrillose, evaueseent; gills broad, ventrieose, aseending, attenuated behind, free, white or pallid, then eiunamon.-Huss. ii. $t .45$.

Amongst moss aud beeeh-mast. May. Hayes, Surrey. Pileus one ineh aeross. Stem $1 \frac{1}{2}-2$ inches high. Tasteless and seentless. Flesh pallid. Allied to C. leucopus and C. Krombholzii.
47. C. (Hygrocybe) leueopus, Fr.; pileus slightly fleshy, eouical, then expanded, at leugth umbonate, even, smooth, light-red; stem stuffed, then hollow, equal, white; gills
slightly adnexed, ventricose, crowded, pallid, then cinnamon. —Bull. t. 553. f. 2.

In woods. Not uncommon.
48. C. (Hygroeybe) acutus, Fr .; pilcus membranaceous, conical, acutely umbonate, striate, light reddish-yellow, at length tan-coloured, shining with a silky lustre ; stem fistulose, equal, slender, flexuous, pallid; veil fugacious, white; gills adnate, rather crowded, slender, narrow, ochraceous, quite entire.

On moist spots in woods. Not uncommon. Mr. Jerdon has sent me a cespitose, obtuse form, with a slightly viscid pilcus, approaching C. pluvius. I have the same form from the United States. The species comes near to Galera.

5. PAXILLUS, F.

Gills persistent, distinet from and casily scparating from the hymenophorum, whieh is confluent with the stem; trama obsolete.

1. P. involutus, F_{r}.; stained when bruised ; pileus compact, convexo-plane, then depressed, moist, at leugth smooth, tomentose about the involute margin; stem solid, fleshy, firm, naked, incrassated upwards, paler, as well as the branched broad gills, which are porous, and anastomose bchind. (Plate 12, fig. 5.)

On the ground, amongst grass, and on sandy banks. Very common, sometimes attaining a considerable sizc. Pilcus olive-brown, sometimes tinged with purple.
2. P. atro-tomentosus, Fr .; pileus convexo-planc, then depressed or funnel-shaped, granulated, rivulose; margin thin, involute; stem solid, spongy, firm, velvety; gills straight, erowded, branched behind.-Batsch, f. 32.

On stumps of pines, Woodnewton, Northamptonshire. Compton Basset, Wiltshire, Miss Dalby. Pilcus several inches across, olivaceous-brown; stem sometimes obsolete, when present deusely velvety. Withering's A. aurantio-ferrugineus is referred to this spceies, but a figure sent to me by Fries show's me that Secretan's quotation must be wrong.
3. P. Panuoides, Fr.; pilcus fleshy, conchate, at length smooth, dirty-yellow, elongated behind, sessile or stipitate; gills erowded, decurrent, branched, dirty-yellow. (Plate 12, fig. 6.) -Sow. t. 403.

In cellars, on sawdust, etc. Not common. In profusion at a sawmill, Coed Coeh, 1858 and 1859. Closely resembling the last.

6. GOMPHIDIUS, Fr .

Pileus top-shaped. Hymenophorum confluent with the stem. Gills slightly branched, formed of a mueilaginous membrane, edge acute. Spores fusiform.

1. G. glutinosus, $F r$.; pilcus obtuse, glutinous, purplebrown ; gills dirty-white, then cinereous; trama none.-Sow. t. 7.

In fir-woods. Not uneommon. Pileus 3 inehes aeross. Stem yellow within, and frequently at the base.
2. G. viscidus, Fr.; pilens at length umbouate, viscid, brownislı-red ; gills purple-umber, truly branched ; trama like the substance of the pileus.-Sow. $t .105$.

Under Scoteh firs. Larger than the last. Stem deep rlubbarb-coluur within.
3. G. gracilis, B. and Br.; pileus conico-hemispherical, elothed with dingy gluten, at length spotted with black; gills of a watery dingy-white, forked; stem slender, sprinkled with minute seales above, virgate below. (Plate 12, fig. 7.)

In fir-woods. Not uneommon. The speeimen figured was gathered in Sir C. Anderson's plantations at Lea, near Gainsborough. Pileus seareely exceeding 2 inches, generally smaller.

7. HYGROPHORUS, $F 7$.

Hymenophorum eontinuous with the stem, and deseending without ehange into the sharp-edged gills; hymenium waxy.

* Veil universal, viscid.

1. H. chrysodon, Fr. ; white ; pileus fleshy, convexo-plane, viscid; margin involute, elothed with little yellow floceose seales, as well as the stuffed, nearly equal stem; gills rather thin, distant, at length crisped.

In roods. Not common. Pileus 2-3 inehes broad; gills often edged with yellow glandular flocei. Extremely elegant.
2. H. eburneus, Fr.; white ; pileus fleshy, even, smooth, ghatinous, as well as the stuffed, then hollow, unequal stem, whieh is dotted above with glandular seales; gills firm, distant, straight. (Plate 15, fig. 1.)

In woods. Not uneommon. Turning a foxy-red in parts, as it deeays. Easily distinguished from H. virgineus, with whiel it is often eonfounded by the glandular seales at the top of the stem.
3. H. cossus, Fr .; strong-seented, white; pileus fleshy, even, smooth, viseid, assuming at length a yellowish tinge; stem stuffed, nearly equal, glandular above; gills thin, distant, straight.-Sow. t. 121.

In woods. Extremely like the last, but not turning red, and always distinguished by its smell, which is like that of the larva of the goat-moth. When bruised it is sometimes yellow.
4. H. cerasinus, B. ; pileus fleshy, eonvex, broadly umbonate, pale umber, then grey, viscid ; margin minutely tomen-
tose ; stem white, solid, attenuated below, punetato-squamulose above; gills broad, decurrent, white, tinged with pink, sometimes forked, very distant.

In fir-plantations. Rare. Winkbourn, Notts. Smell like that of laurel-leaves. Pileus $1 \frac{1}{2}-2 \frac{1}{2}$ inches aeross, sometimes depressed. This does not seem to be the same speeies with H. agathosmus, Fr.
5. H. aromaticus, B.; very tender; pileus fleshy, smooth, einnamon, glutinous; stem stuffed, then hollow, reticulated; gills pinkish, decurrent when young.-Sow. t. 144.

Not found sinee the time of Sowerby. Sinell agrecable, spiey. Turns blaek when bruised.
6. H. mosotephrus, B. and $B r$.; pileus eonvex, subhemispherical, hygrophanous, white, with a brown dise, striate, viseid, as well as the slender stuffed stem, whieh is floeeosogranulated above ; gills decurrent, pure white.-Ann. of Nat. Hist. ser. 2. vol. xiii. t. 15. f. 2.

In woods. Rare. Bowood, C. E. Broome. Pileus about 1 inch across. Allied to H. fusco-albus.
7. H. hypothejus, Fr.; pileus fleshy, clothed with thin olive evaneseent gluten, somewhat virgate; stem stuffed, equal, viseid, somewhat spotted ; gills distant, yellow.-Sow. t. 8.

In pine-woods, espeeially where the soil is sandy. Not uneommon. Pileus yellowish, often tinged with red. Flesh yellow. Gills sometimes tinged with pink.
8. H. olivaceo-albus, Fr. ; pilcus fleshy, even, elothed with evaneseent olive gluten ; umbo brown ; stem solid, equal, viseid, at first furuished with a floceose ring, spotted with dark seales, even above ; gills white.

In woods and woodland pastures. Not eommon. North. amptonshire. By no means yellow like the last.
** Tcil none ; pileus fleshy, moist, scarcely viscid.
9. H. leporinus, Fr.; pilcus cqually fleshy, convex, gibbous, cqual, fibrilloso-floecose, opaque; stem short, stuffed, firm, attenuated, fibrillose, pallid; gills decurrent, reddish-grey.-Scheeff. $t .313$.

On downs. Durdham Downs, C. E. Broome. Kent, Mrs. Hussey. Sporcs pale umber. Pileus yellowish-red, about 2 inches across.
10. H. pratensis, Fr .; pilcus convexo-planc, then turbinate, smooth, moist; disc compact, gibbous; margin thin ; stem stuffer, even, attenuated downwards; gills deeply decurrent, arcuate, thick, distant.-Grev. t. 91. Huss. ii. $t .40$.

On downs and short pasturcs. Very common. Pilcus tawny or deep buff, sometimes nearly white, as in the next. Probably esculent.
11. H. virgineus, Fr . ; pilcus flesly, convexo-plane, obtuse, moist, at length areolato-rimose; stem stuffed, firm, short, attenuated at the base ; gills decurrent, distant, rather thick.-Grev. t. 166.

On downs and short pasturcs. Extremely common. Mostly pure ivory-whitc.
12. H. niveus, Fr.; pilcus submembranaccous, campanu-lato-convex, then umbilicate, smooth, moist, striate, viscid; stem slender, fistulose, equal ; gills decurrent, then arcuate, distant.-Kromb. t. 25. f. 1-3.

In mossy pasturcs. Very common. "White, hygrophanous. Smaller than the last. Disc not truly fleshy, and hence umbilieate, not rimose." I am not prepared to say whether this is truly distinct from the last. Sometimes it is only a few lines across.
13. II. russo-coriaceus, B. and Mill.; swect-scented ; pileus ivory-white, slightly viscid, convex, Heshy ; stem slender,
smooth, solid; gills broad, thiek, arehed, decurrent, very few, and distant.

In exposed pastures. Rare. Walkeringham, Notts, Rev. T. K. Miller. Known at onee by its persistent delightful odour, like that of Russian leather or Potentilla atro-sanguinea. Pileus seareely execeding half an ineh in diameter.
14. H. ovinus, Fr.; pileus fleshy, thin, eonieo-eonvex, then expanded, gibbous, viseid, squamulose, brown; stem somewhat stuffed, smooth, shining, thiekened at either end; gills areuato-decurrent, eonneeted by veins, white, then dingy; edge thin.-Bull. $t .580$; Huss. ii. $t .50$.

In pastures. Not eommon. Northamptonshire. Coed Coel. Ag. compressus, Sow., probably represents this speeies. Pileus about $2 \frac{1}{2}$ inehes aeross.
*** Whole fungus of a vatery, succulent substance; veil none.
15. H. distans, B.; pileus somewhat fleshy, plane or depressed, viseid, white with a silky lustre, here and there stained with brown; stem white above, cinereous below, and attemuated, not spotted ; gills few, very distant, subventrieose, deeurrent, pure white at first, then tinged with einereous; interstiees obseurely rugose. (Plate 13, fig. 1.)

In woods. Rare. King's Cliffe. June 30, 1859. About 2 inches aeross. Often umbilieate.
16. H. Colemannianus, Blox.; pileus subearnose, umbonate, umber, turning pale exeept in the eentre, even, striate when moist and slightly viseid; stem nearly equal, somewhat silky, whitish; gills rather broad, of the same eolour as the pileus, distant, deeply deeurrent; interstiees venoso-rugose.

In grassy pasture. Twyeross, Warwiekshire, Rev. A. Bloxam. Pileus 1-2 inehes aeross, reddish-umber.
17. H. lætus, Fr .; pileus thin, eonvexo-plane, nearly even,
viseid, somewliat shining, tawny, as well as the tough, equal stem ; gills subdeeurrent, thin, distant, paler.

On open pastures. Not uncommon. Seotland, England, and Wales. Pileus about an ineh aeross, brightly eoloured, not turning pale like the last.
18. H. eeraeeus, $F r$.; brittle; pileus thin, convexo-plane, obtuse, slightly striate, waxy, yellow as well as the fistulose, unequal, shining stem; gills adnato-decurrent, distant, yellow. -Sow. t. 20.

In pastures. Common. Easily known from the other yellow species by the gills.
19. H. coccineus, $F r$. ; brittle ; pileus thin, eonvex, obtuse, viseid, searlet, turning pale, smooth ; stem hollow, eompressed, yeilowish, searlet above; gills adnate, deeurrent with a tooth, eonneeted by veins variously shaded.-Schaeff. t. 302 ; Huss. i. t. 61 .

In open pastures. Extremely common. Nearly allied to the next, but larger.
20. H. miniatus, Fr.; brittle; pilcus thin, eonvex, then nmbilieate, vermilion, soon changing eolour and becomirg opaque and squamulose ; stem somewhat stuffed, equal, polished searlet; gills adnate, distant, yellow or yellowish-vermilion. -Kromb. t. 1. f. 21.

In moist places, on heaths, ete. Common. Requires to be earefully distinguished from the last.
21. H. puniceus, Fr . ; brittle; pilcus thin, flesliy, eampanulate, obtuse, waved, even, viscid, bloorl-searlet, then turning. pale; stem thick, hollow, ventrieose, striate, white at the base; gills adnexed, thick, distant, yellow.-Bolt. t. 67. f. 2. t. 43.

In meadows. Not eominon. I have a golden-yellow form with an umbilieate pileus and adnate gills, intermediate between this and the next.
22. H. obrusseus, Fr.; brittle, bright golden-ycllow ; pileus flesly, thin, eonieo-convex, obtuse, waved, nearly dry, even, as well as the hollow, somewhat eompressed, smooth stem; gills adnato-ventrieose, thiek, distant.

In woods. Rarc. Mossburnford, A. Jerdon.
23. H. conicus, Fr .; brittle; pilcus submembranaccous, conieal, aeute, smooth, somewhat lobed, at length expanded, rimose, black when bruised or decaying; stem hollow, eylindrical, fibroso-striate; gills attenuated, free, ventrieose, then rather crowded.-Sow. $t .381$.

In pastures. Extremely common. Always known by its turning blaek. Pileus ycllow, scarlct; gills yellow, or shaded with red.
24. H. psittacinus, F. ; pileus thin, eampanulate, expanded, umbonate, more or less striate, elothed, as well as the tongh, even, hollow stem, with green, evaneseent gluten ; gills adnatoventricose, thiek, distant.-Sow. t. 82. Huss. i. t. 4.1.

In fields. Extremely common. Pileus lilac, yellow, white, cte., when the green gluten vanishes. Stem generally green above.
25. H. calyptræformis, B. and Br .; pileus thin, acutcly conical, lobed below, minutely imato-fibrillose; stem white, smootl, slightly striate, hollow ; gills rose-coloured, at length pallid, very narrow, acutely attenuated behind.-A. conieus, y amœenus, Lasch. in Linn. iii. p. 380.

On the borders of woods and in open pastures. Probably not uncommon. Pileus pink, beeoming pallid. Very distinet from H. conicus. It does not turn black when bruised.
26. H. unguinosus, Fr . ; brittle ; pileus thin, eampanulatoeonvex, obtuse, even, elothed with dingy gluten as well as the hollow, unequal stem; gills adnato-ventricose, plane, thick, white, becoming glaucous.

In woods and pastures. Not uneommon. Persistently dingy.
27. H. murinaceus, Fr.; brittle, strong-seented ; pileus thin, eampanulate, flattened out, irregular, viscid, soon dry, rimuloso-squamose; stem rather hollow, unequal, somewhat eompressed, even; gills adnate, separating, broad, distant, somerwhat undulated, white, then glaueous.

In pastures. Noteommon, C.E.Broome. Smellstrong, nitrous. This is quite different from A.murinaceus, whiel is a Tricholoma.

8. LACTARIUS, $F r$.

Hymenophorum eonfluent with the stem and resieulose trama. Gills milky, edge aeute.

* Gills not decidedly changing colour ; milk at first white, acrid.

1. L. torminosus, Fr.; pileus fleslyy, depressed, somewhat zoned, pallid as well as the equal, stuffed, at length hollow stem ; margin involute, bearded ; gills thin, dirty-white; milk acrid, white, unehangeable.-Sow. t. 103.

In woods, ficlds, ete. Common. Pilcus 3 inches or more aeross, sometimes tinged with reddish-grey, or flesh-eoloured.
2. L. cilicioides, Fr.; pileus fleshy, soft, depressed, tomentose, zoncless, turning pallid, margiu fibrilloso-lanuginous; stem stuffed, even, pruinose, silky, spotless, pallid; gills erowded, branehed, white, beeoming ycllowish as well as the milk.

In pine-woods. Edinburgh, Greville. Rare.
3. L. turpis, Fr. ; pileus eompaet, plane, olive-umber, zoneless, margin at first clothed with yellowish down ; stem stuffed, short, viscid, attenuated dowuwards, olive; gills thin, pallid, milk-white, aerid.-Kromb. t. 69. f. 1-6.

In fir-woods. Coed Coelı. Last Bergholt, where Dr. Bad-
ham has shown it to me in great abundance. Pileus several inches across. A. necator, Bull., is merely a form of L. torminosus.
4. L. insulsus, Fr. ; pileus fleshy, umbilieate, then funnclshaped, viseid, yellowish, zoned, margin naked; stem stuffed, then hollow, firm, pallid, as well as the erowded, forked gills. (Plate 13, fig. 2.) -Huss. i. t. 59.

In woods, and on their borders. Very eommon. Sometimes attaining a large size. Flesh not eompaet as in the next. Spores yellowish.
5. L. zonarius, $F r$. ; pileus compact, umbilieate, even, viseid, marked with yellowish zoncs; margin involute, naked; stem short, solid, elastic, even, yellowish ; gills thin, crowded, dirtywhite; milk white, aerid, unchangeable.-Bull. t. 104.

On the borders of woods. Rare. Cotterstock, Northamptonshirc. I have not, however, seen it for a great many years. Harsh and woody.
6. L. blennius, $F r$.; pileus fleshy, depressed, glutinous, often coneentrieally guttate, greenish-grey; margin from the first even, slightly pubeseent; stem stuffed, then hollow, viseid, of the same colour; gills crowded, white, as well as the aerid milk.-Kromb. t. 69. f. 7-9.

In woods. Extremely eommon. Pileus about $3 \frac{1}{2}$ inches across; gills cinercous when wounded.
7. L. hysginus, Fr.; pileus fleshy, rigid, umbilieate, even, viscid, flesh-coloured, inelining to red; margin thin, inflexed; stem stuffed, then hollow, smooth, somewhat spotted; gills erowded, white, as well as the aerid milk.-Kromb. t. 14. f. $15,16$.

In woods. Edgbaston, Withering.
8. L. circellatus, $F r$.; pileus fleshy, convex, then plane, waved, viseid, zoned; zones and ferruginous dise, which is
from the first umbilicate, darker; stem solid, firm, attenuated downwards ; gills crowded, dirty-white ; milk white, acrid.Sow. t. 203.

In woods. Rare. It would scem from Sowcrby's drawing that the milk in his plant is white, and if so, Fries is right in referring it to this species. "Pilcus brownish or rufous, turning pale, darker under the scparable cuticle."
9. L. uvidus, $F r$.; pileus fleshy, thin, eonvex, then depressed, zoncless, viscid, dingy ; margin at first involute, naked ; stem soon hollow, viscid, pale; gills thin, crowded, when wounded becoming lilac, as well as the white milk.-Batsch, f. 202.

In woods. Not uncommon. Pileus about $2 \frac{1}{2}$ inches across.
10. L. pyrogalus, Fr.; pileus flcshy, flattened, depressed, somewhat zoned, smooth, even, rather moist, livid-cincreous; stem stuffed, then hollow, pallid, attenuated downwards; gills thin, rather distant, yellowish; milk abundant, white, extremely acrid.-Kromb. t. 14. f. 1-9.

In woords and meadows. King's Cliffe. Coed Coch.
11. L. plumbeus, $F r$.; pileus compact, convex, then infundibuliform, dry, not polished, dingy, then blaekish-brown; stem solid, equal, blunt; gills erowded, ycllowish ; milk acrid, white, unehangeable.-Sow. t. 245 .

In woods. Rare. Edinburgh, Dr. Greville. Scveral inehes across. Sowcrby's plate represents the gills as broad and dingy like the pileus, as well as the milk, but in the original drawing they are pallid, and the milk white.
12. L. piperatus, Fr.; white ; pilcus compact, umbilicate, then infundibuliform, rather regular, zoncless, even, smooth; stem solid, thick, very short; gills decurrent, crowded, narrow, dichotomous; milk abundant, acrid, whitc.-Kromb.t.57. f. 1-3.

In woods. Common. Much neater than L. vellereus, with narrow gills, which resemble ivory, and sometimes assume a yellowish tint. (Plate 13, fig. 3.)
13. L. vellereus, Fr .; white; pileus compact, umbilicatoeonvex, tomentose, zoneless, margin reflexed; stem solid, blunt, pubeseent; gills distant, areuate, dirty-white; milk acrid, white.-Sow. t. 204; Huss. i. t. 63.

In woods. Extremely common. Attaining a large size. A form oceurs whieh is quite juiecless, and is almost as common (A. exsuccus, Auct.).
** Aromatic; gills becoming pallid; mill, always coloured.
14. L. deliciosus, $F r$.; pileus fleshly, umbilieate, viseid, zoned, smooth, rufous-orange, turning pallid, margin smooth; stem stuffed, then hollow, somewhat spotted; gills and milk at first saffron-red, at length greenish.-Sow. t. 202 ; Huss. i. t. 67 .

In fir-woods. Often very abundant, but rare in some loealities. Eseulent. The gills, when wounded, turn a dull green, like the milk. Pileus 4-5 inches aeross. Slightly aerid.
*** Gills changing colour, dusted with the white spores; mill at first white, mostly mild.
15. L. theiogalus, Fr.; pileus fleshy, convex, then depressed, viseid, smooth; stem stuffed, even, of the same colour; gills thin, erowded, yellowish ; milk white, then sulphur-coloured. —Kromb. t. 1. f. 23, 24.

In woods. Very common. Pilcus ochraceous or tawny, zoned or zoneless, 2-3 inehes across. Smell spiey.
16. L. ehrysorrheus, Fr.; pileus slightly flesly, umbiliente, then fumnel-shaped, pinkish-yellow, with darker zones or spots; stem stuffed, then hollow, equal, even, white; gills thin, de-
eurrent, crowded, yellowish; milk very aerid, white, then golden-yellow.-Kromb. t. 12. f. 7-14.; Bolt. t. 144.

In woods. Not eommon. Seotland, Klotzsch. Pileus 2-3 inehes aeross.
17. L. acris, Fr. ; pileus flesliy, irregular, at length funnelshaped, viseid, dingy-einereons; stem stuffed, then hollow, subexeentrie, pallid, attenuated downwards; gills rather crowded, pale yellow, turning red as well as the white milk.-Bolt. t. 60.

In troods. Rare. Scotland, Dorsetshire, etc. Not always exeentrie, nor does the milk always change its eolour with equal intensity.
18. I. pallidus, $F r$. ; pileus fleshy, depressed, obtusc, smooth, riseid, zoneless, pallid, as well as the stuffed, then hollow, stout, firm stem; margin thin, inflexed; gills erowded, white, then pallid, pruinose ; milk mild, white.-Kromb. t.56. f. 10-14.

In woods. Bowood, C. E. Broome. A large speeies.
19. L. quietus, $F r$: ; pileus fleshy, depressed, obtusc, at first viseid, soon dry, turning pale, somewhat zoned, opaque, rufescent, as well as the stuffed, smooth stem ; gills white, then reddish; milk mild, white.-Kromb. t. 40. f. 1-9.

In woods. "Known by its at first pinkish, somewhat silky, pileus, whieh is darker in the centre and obsoletely zoned, its spongy, at length rubiginous stem, and the evaneseent slime."
20. L. volemum, Fr .; pileus eompaet, rigid, plano-depressed, obtuse, dry, of a golden tawny, at length rimoso-rivulose; stem solid, hard, blunt, pruinose; gills erowded, white, beeoming yellowish ; milk abundant, mild, white--Huss. i. i. 87.

In woods. Not common. King's Cliffe, ete. Pilcus 4 inehes aeross. Eseulent.
21. L. serifluus, Fr.; pilcus flesly, plane, then depresser,
subflexuous, dry, smooth, zoncless, brownish-tawny, margin inflexed; stcm solid, equal, somewhat ineurved, palcr, turning yellowish, as well as the erowded gills; milk sparing, of the colour of serum. (Plate 13, fig. 4.)

In woods. Common. Milk of a watery-whitc.
22. L. mitissimus, Fr . ; pilcus thin, fleshy, convex and smooth, then depressed, papillate, dry, zoncless, even, orange, as well as the stuffed, then hollow stem; gills crowded, paler ; milk mild, whitc.

In. woods and on hedge-banks. Not uncommon. Very abundant about Cocd Coch, and cxtremely beautiful.
23. L. subdulcis, $F r$. ; pileus thin, fleshy, papillate, at length depressed, polished, even, zoncless, rufous-cimnamon; stem stuffed, then hollow, equal, subpruinose, becoming rufous, as well as the brittle, crowded gills; milk scarcely acrid, white. —Sow. t. 204.

In woods. Very common.
24. L. camphoratus, Fr.; pileus fleshy, thin, depressed, dry, somewhat zoned, smooth, hrownish-red, as well as the stuffed, somewhat undulated stem ; gills crowded, ycllow-red; milk mild, white.-Bull. t. 567. f. 1.

In woods. Not vcry common. Bristol, Dr. Stephens, C. E. Broome. Known by its powerful smell of Melilot, which it retains for a long time in the herbarium. Pilcus $1 \frac{1}{2}$ inch across.
25. L. rufus, Fr. ; pileus fleshy, umbonatc, at length funnelshaped, dry, flocculose, then smooth and shining, zonelcss, dark rufous; stem stuffed, rufous; gills crowded, ochraccous and rufous; milk white, extremely acrid.-Huss. i. t. 15.

In fir-woods. In most districts very common. The umhonate pilcus and acrid milk at oncc distinguish this dangerous fungus from the five preceding specics.
26. L. glyciosmus, Fr.; pileus thin, fleshy, convexo-planc, somewhat umbonate, dry, squamulose, lurid, opaque ; stem stuffed, slender, pubescent, pallid; gills crowded, yellowishochre; milk acrid, white.

In fir-woods. Scotland, Dr. J. C. Buuchop, etc. Remarkable for its peculiar, sweet, but oppressive smell.
27. I. fuliginosus, Fr.; pileus flesly, soft, depressed, obtuse, quite dry, zoneless, at first clouded with a dingy bloom, then naked and cinereous-tan, as well as the spongy, stuffed stem ; gills crowded, tan-coloured ; flesh and acrid milk white, then saffron-coloured.-Bull. t. 567.f. 3.

In woods. Very common. Sporcs yellowish. The change of eolour in the flesh is often more striking than in the milk.

$$
\text { 9. RUSSULA, } F r \text {. }
$$

Hymenophorum continuous with the vesiculose trama. Gills rigid, not milky ; edge acute. Veil none.

* Pileus fleshy all over; margin consequently even and without strice; not clothed with a distinct, viscid pellicle.

1. R. nigricans, Fr .; pileus fleshy all over, compact, umbilicate, depressed, dingy-olive ; margin inflexed, cven, charred as well as the solid, blunt stem; gills rounded, thick, distant, unequal.-Sow. t. 30 ; Huss. t. 73 .

In woods. Extremcly common. Turning quite black in decay. Flesh reddish when cut. Pileus several inches across.
2. R. adusta, Fr.; pileus fleshy all over, compact, depressed, then somewhat funnel-shaped; margin at first inflexed, smooth, then ereet, even, dingy, cinercous as well as the blunt, solid stem; gills adnate, then deeurrent, thin, erowded, unequal.Kromb. t. 70. f. 7-13.

In woods. Not eommon. Coed Coeh. Smaller than the last.
3. R. delica, $F i$.; pilcus fleshy all over, firm, umbilicate, even, shining; margin involute, smooth, cven, white, as well as the solid, compact stem; gills thin, decurrent, distant, white.

In woods. Not eommon. King's Cliffc. Resembling Lactarius vellereus, from the juiceless state of which it requires to be earcfully distinguished. Bolt. t. 28 is referred by Frics doubtfully to R. elephantina. He cridently confused it with Russula feetens.
** Pileus opaque, elothed with a thin, elosely adnate pelliele, viscid when moist, but whieh disappears when the plant is old; margin at length striate, but never tubereulate.
4. R. sanguinea, Fr. ; acrid ; pilcus firm, fleshy, convex, then depressed and gilbbous, at length even, moist'; margin thin, acute, even; stem solid, spongy, slightly striate, white or pinkish; gills thin, decurrent, very crowded, somewhat forked, connceted, whitc.-Bull. t. 42.

In woods. Not common. King's Cliffc, cte. Gills narrow; flesh very firm. Pileus generally blood-red.
5. R. rosacea, Fr .; at length acrid; pileus compact, con-vexo-plane, unequal, viseid, then dry, varicgated with spots; margin acute, even ; stem solid, spongy, even, white or pinkish ; gills aduate, rather crowded, plane, unequal, white, divided behind.-Bull. t. 509. f. Z.

In woods. Not common. Fineshade, Northamptonshirc. Pilcus gencrally deep red.
6. R. furcata, $F r$.; mild, at length bitter; pilcus fleshy, rigid, at length depresserl, funnel-shaped, even, partially shining, with a silky lustre, at length smooth; margin even, acute; stem stont, firm, cven, attenuated downwards, white as woll as the adnato-decurrent, rather thick, somewhat distant, forked gills.-Kromb. t. 62. f. 1, 2.

In woods. Common. Generally greenish, but variable in eolour.
7. R. vesca, $P 3$.; mild, sweet to the taste ; pileus firm, flesly, umbilieate, eonvex, then expanded, funnel-shaped, venoso-rugose; flesh reddish under the viseid pelliele; margin even, or at length remotely striate ; stem firm, unequal, rivu-loso-rugose, white, as well as the adnate, rather erowded, unequal, forked gills.-Bolt.t. l. (Huss. i. t. 89.)

In woods. Not eommon. Eseulent. Kent, Mrs. Hussey.
8. R. heterophylla, Fr. ; mild ; pileus firm, fleshy, eonvexoplane, then depressed, even, polished ; pelliele very thin, evaneseent; margin thin, even, or densely striate; flesh white; stem solid, firm, nearly equal, even, white, as well as the attenuated, nearly free, ver'y erowded, forked, and dimidiate gills. (Plate 13, fig. 5.)—Huss. i. t. 84.

In woods. Common. Eseulent. Very variable in colour.
9. R. depallens, $F r$.; mild ; pileus firm, fleshy, undulated, irregular, even, opaque ; pelliele thin, viseid, adnate, turning pale ; margin even, at length slightly striate; stem firm, attenuated downwards, white, beeoming einereous; gills adnexed, erowded, brittle, forked behind, dirty-white.-Kromb. t. 66. f. 12, 13.

In pastures. Laxton, Northamptonshire. Stem in my spesimens spongy, and not attenuated. Pileus red, ehanging to white.
10. R.sardonia, $F r$.; pileus fleshy, firm, eonvexo-plane, then depressed, smooth; pelliele thin, adnate, viseid, ehanging eolour; margin even ; stem solid, spongy, short, white or reddish; gills aduate, very erowded, somewhat forked, yellow.Kromb. t. 68. f. 1-4.

Near paths in fir-woods, as at Coed Coch. A small species. Pileus dull yellow.
*** Pileus without any viscid pollicle, dry, commonly breaking up into flocci and granules; margin straight, not striate.
11. R. rubra, Fr.; aerid ; pileus fleshy, rigid, eonvex, then flattened or depressed, dry, polished, at length even; margin patent, obtuse, even; stem hard, solid, stout, white or red; gills obtusely adnate, rather erowded, dirty-white, often forked and dimidiate.-Kromb. t. 65.

In woods. Not uneommon. A splendid speeies. Pileus generally intensely red. Flesh grumous.
12. R. lepida, Fr.; mild; pileus fleshy, eompaet, convex, then depressed, unpolished, slightly silky or rimoso-squamose, turning pale; margin patent, obtuse, even; stem solid, eompaet, even, white or pink; gills rounded, rather thiek and crowded, many of them forked, white.-Huss. ii. t. 32.

In woods. Kent, Mr. Hussey. Eseulent.
13. R. vireseens, Fr.; mild; pileus firm, fleshy, globose, then expanded and umbilicate, innato-floceulose or areolate and warty; margin straight, obtuse, even; stem solid, spongy, stout, subrivulose, whitish as well as the free, rather erowded, unequal, and forked gills. (Plate 13, fig. 6.)-Huss. ii. t. 11 .

In woods. Not very common. Esculent. Pileus greenish. Easily known by the rough surface of the pileus.
**** Pilcus brittle, clothed with a viscid cuticle; margin connivent, but not involute, generally sulcate and tuberculate.
14. R. emetica, Fr .; acrid; pileus fleshy, flattened out or depressed, polished, shining; margin patent, at length suleate ; flesh white under the separable red cutiele; stem solid, spongy, firm, elastie, even, white or pink; gills free, equal, broad, rather distant, white.-Kromb. t. G6. f. 4-7.

In woods, but not eommon. A large and fine species.
15. R. ochroleuea, Fr .; aerid ; pileus fleshy, flattened ont
or depressed, polished, adnato-pcllieulose, turning pale ; margin patent, even ; stem spongy, stuffed, firm, reticulato-rugulose, white, then einereous; gills rounded behind, eonnected, broad, nearly equal, white, beeoming pallid.-Kromb. t. 64. f. 7-9.

In fir-woods. Apethorpe, Northamptonshire. Pileus bright pale ochre.
16. R. fœotens, $F r$.; aerid, fetid; pileus bullate, then expanded or depressed, rigid, viseid from the adnate pelliele; dise fleshy; margin widely membranaeeous, tubereuloso-suleate ; stem stout, stuffed, then hollow, dirty-white, as well as very unequal and forked, venoso-anastomosing, and at first guttate gills.-Sow. t. 415 .

In woods. Extremely common. Known at onee by its disagreeable smell. Much eaten by slugs.
17. R. fragilis, Fr.; very aerid; pileus fleshy, thin, plane, depressed, unequal, polished, viseid from the thin bleaehing pelliele; margin tubereuloso-striate; stem stuffed, then hollow, shining ; gills fixed, thin, erowded, ventricose, white.Kromb. t. 64. f. 12-18.

In woods. The most eommon speeies. Generally red, but assuming a variety of other liues.
18. R. integra, Fr. ; mild ; pileus fleshy, expanded or depressed, viseoso-pellieulose, ehanging eolour; margin thin, at length suleate and tubereulate; flesh white; stem stuffed, spongy, even, ventrieose, white; gills almost free, very broad, equal, distant, white, then pallid, dusted with yellow.-Vitt. $t .21$.

In woorls. Bristol, C. E. Broome.
19. R. aurata, Fr.; at length aerid; pileus fleshy, rigid, eonvexo-plane, shining; margin at length striate ; flesh under the viseid pelliele lemon-coloured ; stem eompaet, spongy,
slightly striate, white or yellowish; gills rounded, free, broad, equal, shining, with the edge bright yellow.-Kromb. t. 66. f. 8-11.

In woods. Bristol, C. E. Broome. One of the handsomest of the genus. Pileus bright-orange, ete.
20. R. decolorans, F.: ; mild ; pileus fleshy, firm, spherieal, then expanded or depressed, polished, thin, pellieulose, turning pale; margin thin, even, fleshy and spongy; stem solid, elongated, rugoso-striate, eylindrieal, white, ehanging to einereons; gills fureato-adnexed, thin, erowded, white, then yellowish.

In woods. Northamptonshire. September 16, 1837. Pileus searlet above, 5 inehes aeross; stem $4 \frac{1}{2}$ inehes high, $1 \frac{1}{4}$ thiek.
21. R. nitida, $F r$.; nauseous, rather fetid; pileus slightly fleshy, at length rigid, convexo-plane, then depressed, shining; margin thin, from the first striate and tubereulate ; flesh white; stem stuffed, soft, white, beeoming pallid; gills adnexed and sceeding, thin, erowded, shining, white, then yellow. (Plate 13, fig. 7.) -Kromb. t. 66. f. 1-3.

In woods. King's Cliffe. Small. Pileus variable in colour.
22. R. alutacea, Fr.; mild; pileus fleshy, obtuse, expanded or depressed, viseoso-pellieulose, ehanging colour; margin thin, at length striate, tuberculated; flesh white; stem stout, spongy, solid, white or red, even; gills at first free, thick, equal, rather distant, tan-eoloured from the first. (Plate 13, fig. 8.)

In woods. Very common. Eseulent. Easily known by its large size, mild taste, and gills, which are yellow in every stage of growth.
23. R. Iutea, Fr .; mild; pileus rather firm, plano-depressed, pellieuloso-viseid, turuing pale; flesh white; margin
cven ; stem stuffed, then hollow, soft, white; gills frec, crowded, connected by veins, egg-ycllow.-A. lutcus, Huds.

In woods. Scotland, Klotzsch. Small. Pileus yellow.
24. R. vitellina, Fr.; strong-scented, mild ; pileus submembranaceous, self-colourcd, at length tuberculato-siriate ; disc minute, slightly fleshy ; stem slender; gills distant, connected by veins, ncarly free, equal, saffron-ycllow.-Batsch, f. 72 .

In fir-woods, ete. Not uncommon. A small species, scarcely exceeding an inch in diametcr, with a short slender stem. Pileus mostly jellow, occasionally tinged with purple. Not, I think, always strong-scented.

10. CANTHARELLUS, Fr.

Hymenophorum inferior, confluent with the floccose trama. Gills thick, swollen, somewhat branched. Edge obtusc.

1. C. cibarius, Fr.; egg-yellow ; pilcus fleshy, at first curved, smooth, at length turbinate; stem solid, attenuated downwards ; gills thick, distant, of the same colour.-Grev. $t .258$.

In roods. Common. Esculent. Smell like that of ripe apricots. Taste agrecable, but pungent. There is a whitc variety of this, as also of the next.
2. C. aurantiacus, Fr.; of a more or less decided orauge ; pileus flcshy, soft, clepressed, tomentose, unequal, as well as the stuffed stem; gills erowcled, straight, darker than the pilcus. (Plate 14, fig. 1.)

In fir-woods and on heaths. Common. Smaller than the last, often extremely beautiful. Stem frequently black at the base. Scarcely esculcut.
3. C. Brownii, B. and Br.; ochraccons-white or cream-
coloured; pileus thin, convex, subuınbonate; stem slender, tough, stuffed; folds rather distant, linear, extremely narrow, sometimes forked, obtusely decurrent.-Ann. of Nat. Hist. ser. 2. vol. ii. p. 262.

Amongst grass. In the park at Hitchin, Mr. J. Brown. Pileus about $\frac{1}{2}$ au inch across; stem slender, $1 \frac{1}{2}-2$ inehes high. A very interesting and distinct species.
4. C. umbonatus, P. ; pileus flcshy, thin, umbonate, then depressed, floceulose, einereous-black; stem stuffed, equal, paler ; gills straight, erowded, white.

Amongst moss. Mossburnford, A. Jerdon, Esq. Resembles closely an Agaric, but the forked, obtusc gills, if properly obscrved, arc decisive as to its affinities.
5. C. tubæformis, $F r$.; pilcus carnoso-membranaceous, funnel-shaped, curved and lobed, flocculose, brownish, turning pale; stem smooth, hollow, orange-tawny, at length compressed and lacunose ; gills thick, distant, branched, yellow or dingy, naked.-Ditm. in Sturm, i. t. 30.

In woods. Not uncommon. Remarkable for the bright tint of the stem. C. lutescens, Fr., Bull. t. 473. f. 3, has a paler yellow stem, and the gills less divided; the pileus, moreover, is merely umbilicate. It is scarcely to be deemed a speeies. It occurs in the same localitics with C. tubeformis.
6. C. infundibuliformis, F_{r}.; pileus submembranaeeous, umbilicate, then funnel-shaped, floccoso-rugose, dingy-yellow, turning pale ; stem fistulose, even, smooth, yellow; gills thiek, distant, dichotomous, yellow or cinereous, at length pruinose. -Sow. t. 47.

In woods. Not uncommon, but diffieult to distinguish from the last.
7. C. cinereus, Fr . ; pileus submembranaceous, infundibuliform, pervious to the base, villoso-squamulose, dingy-blaek,
as well as the hollow stem; gills thiek, distant, cincreous.Kromb. t. 45. f. 12 ; Bolt. t. 34.

In woods. Rare. Not found since the days of Bolton.
8. C. muscigenus, Fr. ; pileus submembranaceous, spathulate, horizontal, smooth, zoned, brown, then einereouswhite; stem even, lateral, villous at the base; gills swollen, distant, branched, of the same colour.-Bull. t. 288, 498. f. 1.

On the larger mosscs. Not eommon. Berwiek, Dr. Johnston, ou Tortula ruralis. Bristol, C. E. Broome.
9. C. retirugus, $F r$.; thin-membranaeeous, expanded, lobed, curved, fixed behind with little threads, pale einercouswhite; gills radiating from the centre, very delicate, retieulate. (Plate 14, fig. 2.)

On mosses, in swamps. King's Cliffe, in tolerable abundance.
10. C. lobatus, Fr.; membranaceous, sessile, horizontal, lobed, brown; gills fold-like, distinet, banded, diverging.Bolt.t. 177.

On mosses, in swamps. Not common. Very nearly allied to the last.

11. NYCTALIS, Fr .

Hymenophorum confluent with the stem and trama. Gills fleshy, juiey, or subgelatinous, obtuse, unequal. Often parasitie on other Fungi. Veil universal.

1. N. asterophora, Fr .; pileus rather fleshy, hemispherieal, breaking up into a pulverulent fawn-eoloured stratum ; stem stuffed, pruinose, white, then brownish, twisted; gills adnate, distant, somewhat forked, straight, dingy.-Ditm. in Sturm, t. 26.

On dead dried Agarics. Common. The meal whiel cover's the pileus when full-grown consists of stcllate bodics, which
appear to be a seeond form of fruit. See De Bary, in Bot. Zeit. 1859.
2. N. parasitica, Fr.; pileus slightly fleshy, eonieal, expanded, unequal, pelliele persistent, grey, pruinose ; stem minutely fistulose, floceuloso-villous, whitish ; gills aduate, thiek, distant, at length contorted and anastomosing, brownish. (Plate 19, fig. 2.)

On Russula adusta. Common. In this speeies also De Bary finds a seeond form of fruit, though different from the last, and eonfined to the gills.

12. MARASMIUS, $F r$.

Hymenophorim confluent with the stem, though different in texture, deseending into the floecose trama. Hymenium dry, eovering the interstices as well as the gills. Gills or folds thiek, tough, and subeoriaeeous. Edge aente.

> * Pileus tough, but fleshy; margin at first involute ; mycelium floccosc.

1. M. urens, Fr.; aerid; pileus fleshy, then coriaeeous, eonvexo-explanate, smooth, even, at length wrinkled or rivulose; stem solid, fibrous, rigid, pallid, mealy all over with little white fibrils, and elothed with white down at the base ; gills free, united behind, pallid and yellowish, at length brownish, firm, distant, finally remote. (Plate 14, fig. 3.)

In woods and pastures. Not uneommon. Abundant in the Kew Gardens, mixed with M. oreades. Very nearly related to the next.
2. M. peronatus, Fr .; aerid ; pileus thin, eoriaeeous, con-vexo-plane, obtuse, opaque, at length lacunose; margin striate; stem stuffed with fibres, outer eoat villous, yellowish, then ru-
fescent, peronate and strigose at the base ; gills adnexed, seceding, rather thin and crowded, pallid, at length rufous. (Plate 14, fig. 4.)

In woods, amongst leaves. Common. Rather larger than the last, thinner, and far more wrinkled when old. Stem clothed at the base with dense yellow strige.
3. M. porreus, Fr. ; garlic-scented ; pileus coriacco-membranaceous, convexo-explanate, striate, flaccid; dise even, of the same colour ; stem stuffed, then hollow, tough, juiceless, thickened at either end, reddish-brown, pubescent; gills nearly free, distant, firm, yellowish, then pallid.-Sow. t. 81.

In woods, amongst leaves, generally growing on their midribs. Not eommon. Smell extremcly strong, sometimes persistent for years in dried speeimens. Pileus dirty-white, shaded with brown.
4. M. oreades, Fr.; pileus fleshy, tough, convexo-plane, then somewhat umbonate, smooth, turning pale; stem solid, equal, covered with a woven villous coat, pallid, naked at the base ; gills free, broad, distant, cream-colourcd. (Plate 14, fig. 5.)

In exposed pasturcs, forming rings. Very common. Esculent. Pileus at first rufous-ochre, nearly cream-coloured when old or dry.
5. M. fuseo-purpureus, $F r$.; seentless; pilcus rather fleshy, convexo-plane, subumbilicate, turning pale ; stem smooth, fistulose, juiceless, brown-purple, with rubiginols strigose hairs at the base ; gills annulato-adnexed, at length free, distant, rufescent.-Pers. Ic. et Descr. t. 4. f. 1, 3.

In woods. Common. Pilcus at first brown-purple, pallid when dry.
6. M. Wynnei, B3. and Br. ; inodorous, eespitose ; pileus fleshy, convexo-plane, subumbonate, lilac-brown, tardily
ehanging eolour; stem fistulose, of the same eolour, furfuraceous; gills thiek, distant, adnexed, bright-coloured. (Plate 19, fig. 3.)

Amongst leaves, twigs, etc. Coed Coeh, abundant. Pileus $1-1 \frac{1}{2}$ inch aeross, variously tinged with brown and lilae. Very beautiful.
7. M. Stephensii, B. and Br.; eæspitose ; pileus depressed, rugose in the eentre, eream-coloured, stained with vinous-red, especially when bruised; stem hollow, twiste?, white and mealy above, shining and nut-brown below; gills distant, dirty-white.-Ann. of Nut. Hist. ser. 2. vol. xiii. p. 403.

Amongst dead becel-leaves. Dursley, Dr. Stephens. Pileus $\frac{1}{2}-1$ inch across. Taste and smell like that of M. oreades.
8. M. erythropus, Fr .; inodorous ; pileus slightly fleslıy, convexo-plane, then obtuse, even, turning pale, at length wrinkled ; stem fistulose, striate, smooth, dark-red, somewhat pruinose when dry, elothed with white strigose lairs at the base; gills nearly free, broad, conneeted by veins, quite entire, dirty-white.

Amongst leaves, near stumps. Not uneommon. Gills not crowded. Pileus pallid, sometimes shaded with pink. Walls of eavity of stem fibrillose.
9. M. archyropus, Fr.; inodorous, fasciculate; pilens slightly fleshy, convexo-plane or depressed, smooth, turuing pale; stem stuffed, then hollow, rigid, straight, pale-rufous beneath the white pruinoso-tomentose bark; gills adnexed, seeeding, erowderl, linear, pallid.-Pers. Myc. Eur.t. 25.f. 4.

Amongst leaves. Rare. Bristol, H. O. Stephens. Pileus about 1 inch across, tan-eoloured. A small but elegant speeies.
10. M. seorodonius, Fr.; garlie-seented ; pilcus slightly fleshy, tough, even, soon plane, rugulose and erisped ; stem
fistulose, equal, quite smooth, everywhere shining, rufous; gills adnate, erisped, dirty-white.-Lenz. f. 17.

Heaths and dry pastures, on twigs, ete. Rare. Bungay, $M r$. Stock. Eseulent. Pileus rufous, ehanging to white.
11. M. Vaillantii, Fr.; inodorous; pileus submembranaeeous, tough, soon expanded, depressed, plieato-rugose, beeoming white; stem stuffed, smooth, bright-brown downwards, paler and thiekened above; gills broad, adnate, thiek, distant, white.-Vaill. t. 11. f. 21-23.

On dead wood. Abundant in a stove at the Royal Botanie Gardens, Regent's Park.
12. IM. fætidus, Fr.; garlie-seented ; pileus submembranaeeous, tough, eonvex, then expanded and umbilieate, striatoplieate when dry, turning pale, somewhat pruinose ; stem fistulose, bright-brown, pruinose or velvety; base floeeulose, inserted into the matrix ; gills annulato-adnexed, distant, ru-fous-yellow.-Sow. t. 21.

On deeayed twigs, ete. Rare. Warwiekshire, Ren. A. Bloxam. Bristol, ete. Pileus not exeeeding an ineh in diameter, at first tawny-bay or rufous.
13. M. amadelphus, $F r$.; inodorous ; pileus earnoso-membranaceous, obtuse, convex, then plane or depressed; margin at length striate; stem short, stuffed, pallid, bright-brown below, somewhat mealy ; gills broadly adnate, distant, broad, pallid.-Bull. t. 550. f. 3.

On dead branehes. Rare. Bristol, Dr. Stephens. Bath, C. E. Broome, etc. Pileus reddish or yellowish. Looks like minute speeimens of Agaricus fascicularis.
14. M. ramealis, Fr.; inodorous; pileus slightly fleshy, plane or depressed, obtuse, without strixe opaque, rugulose ; stem short, stuffed, mealy, white, rufous helow; gills adnate, rather distant, narrow, white.-Bull. t. 336 .

On dry dead branehes in woods. Extremely eommon. Pileus silky under a lens, paler rufous, darker in the eentre; gills pallid when old.
15. M. candidus, $F r$.; white ; pileus submembranaecous, hemispherieal, then plane and depressed, pellueid, naked, at length suleato-rugulose; stem stuffed, thin, incurved, miuutely pruinose, floceose at the base, and at length brownish; gills adnexed, ventrieose, distant.-Bolt. t. 39. f. D.

On twigs, ete. This speeies, as a uative of Britain, rests on the quotation by Fries of Bolton's figure.
*** Stem horny, tough, dry ; mycelium rhizomorphoid; pileus submembranaccous; edge at first straight.
a. Stem smooth.
16. M. androsaceus, $F r$.; pileus membranaceous, eonvex, subumbilieate, striate, smooth; stem horny, fistulose, quite smooth, blaek ; gills adnate, distinet, simple, whitish.-Sow. t. 94.

On leaves, ete., in woods. Extremely eommon. Pileus pale-rufous, darker in the eentre, miuutely silky under a lens.
17. M. rotula, Fr.; pileus membranaeeous, convex, umbilieate, plieate ; stem horny, shining, quite smooth, blaek ; gills broad, few, distant, attaehed to a collar, distinet from the stem. (Plate 14, fig. 7.)

On fallen twigs, deeaying ehips, ete., in gardens and woods. Extremely common. Pileus nearly white.
18. NI. graminum, B. and $B r$.; pileus nearly plane, umbonate, suleate, very pale rufous, the furrows paler, umbo brown; stem quite smooth, shining, blaek, white above; gills few, subventrieose, eream-eoloured, attaehed to a free collar. (Plate 14, fig. 8.)-Agarieus graminum, Libert.n. 119.

On leaves of grass. Fineshade, Northamptonshire, Aug. 8,

1859, M. J. B. and Mr. Currey. South of England, C. E. Broome. Scareely exceeding 3 lines in breadth. Gills even, with veiny interstices. A most elegant speeies, and quite distinct from M. rotula,
19. M. alliaceus, F. ; garlic-scented ; pileus submembranaceous, campanulate, then expanded, somewhat umbonate, cven, then sulcatc, turning pale; stem horny, tall, rigid, black, between velvety and pruinosc, base rooting, naked; gills frec, brownish-white.-Jacq. Aust, t. 82.

In woods. Rare. Edinburgh, Capt, Wauch, Not at all allied to the species which follow.

b. Stem velvety and pilose.

20. M. perforans, Fr.; fetid; pileus submembranaceous, nearly plane, not striate, rugulosc, smooth; stem equal, vel vety, dark-bay, inscrted at the base; gills adnatc, simple, dirty-white, frequently dimidiate.-Batsch, f. 10.

On fir-leaves. Not common. Scotland.
21. M. insititius, $F r$.; inodorous ; pilcus membranaceous, tough, convexo-plane, subumbilicate, unpolished, at length plicato-sulcate; stem horny, floceoso-furfuraceous, reddishbrown, attenuated downwards into the simple inserted base; gills broadly adnate, attenuated in front, distant, simple, unequal, pallicl, white. (Plate 14, fig. 6.)

On lcaves, decayed grass, etc. Northamptonshire. In several localities. This is a variable plant. Some specimens agree exactly with a figure sent to me by Frics, and with the character; in others the stem is paler and the pileus less plicate. The stem, however, is not attenuated downwards. Sometimes the disc is reticulated. The pileus is gencrally nearly white. I have one specimen with a rhizomorphoid mycelium. My plant is exactly Ayaricus calopus, Libert.
22. M. Hudsoni, Fr.; inodorous; pileus membranaceous,
hemispherieal, rugulose, beset with seattered purple bristles, as well as the horny, dark purple stem; gills adnexed, narrow, simple, white.-Sow. t. 164.

On fallen holly-leaves. Southeru counties and Wales. Not uneommon. One of the most exquisite of Fungi.
23. M. saceharinus, Fr.; pileus membranaceous, eonvex, subpapillate, smooth, suleate and plieate; stem very slender, floeeulose, then smootl, reddish, inserted obliquely; gills broadly adnate, thiek, narrow, very distant, conneeted by veins, dirty-white.

On dead twigs. Rare. King's Cliffe.
24. M. epiphyllus, $F r$.; pileus membranaceous, nearly plane, at length umbilieate, smooth, plieato-rugose; stem rather horny, finely velvety, bright brown below, inserted ; gills adnate, few, distant, entire, veiny, white.-Sow. t. 93.

On fallen leaves, twigs, ete., especially ash-petioles. Extremely common. Pileus white. Sometimes almost destitute of gills.

> *** Stemless.
25. M. spodoleueus, B. and $B r$.; conehiform, resupinate; margin at length free, einereous above, pulverulent or slightly furfuraceous; stem wanting; gills few, white; interstiees even. -Ann. of Nat. Hist. May 1859.

On dead elm-twigs. Batheaston, C. E. Broome. Gills narrow, entire, leaving a naked space at the base.

13. LENTINUS, Fr.

Coriaceous, fleshy, and tough, at length hard, tough, dry. Gills tough. Edge aeute, toothed. Hymenophorum homogeneous with the stem.

1. L. tigrinus, Fr r.; pileus fleshy, subeoriaceous, thin, or-
bieular, umbilieate, dirty-white, adorned with innate black scales; stem slender, squamulose, with a deeided veil; gills attenuato-deeurrent, very narrow, white, tinged with yellow. —Sow. t. 68.

On old stumps. Rarc. King's Cliffe, on an oak-stem. Smcll strong, acrid, like that of some Lactarii. Gills forming little villous pores above the filmy ring.
2. L. Dunalii, Fr .; small ; pileus fleshy-eoriaecous, thin, umbilieate, often excentrie, pallid, clothed with adpressed spot-like scales; stem short, rough towards the base with little blaek seales ; gills deeurrent, crowded, pallid. (Plate 15, fig. 2.)

On ash-trees. Rare. Dorsetshire. Smaller than the last, and harder. Perhaps mercly a variety. The eharaeter given by Frics does not aceord with De Candolle's deseription, still less with Bull. t. 36. It is perhaps too near L. tigrinus. Odour subacid, farinaeeous.
3. L. lepideus, $F r$. ; pileus fleshy, compaet, tough, eonvex, then depressed, unequal, pallid-ochraccous, broken up into darker spot-like seales ; stem stout, rooting, tomentoso-squamose ; gills sinuate, deeurrent, broad, torn, transversely striatc, dirty-white.-Sow. t. 382.

On stumps of firs. Rare. Pileus $2-4$ inches across. Often producing stems without pilci, and variously branched.
4. L. adhærens, I rr.; pilcus rather flcshy, tough, irregular, laeunose, subpulverulent, dingy, pallid, glutinoso-laecate, as well as the somewhat hollow, rooting stem; gills decurrent, forming lines on the stem, very thin, torn, white.-With. iv. p. 160.

In pine-woorls. The eitation of Withering is doubtful, as he says notling as to the substance on whiel his plant grows, though his description eorresponds.
5. L. cochleatus, $l^{\prime} r$.; annual, tough, flaceid ; pileus fleshy, but tongh, irregular, more or less lobed or twisted, rufous, turning pallid, as well as the solid, firm, suleate stem; gills erowded, serrated, pinkish-white. (Plate 19, fig. 4.)

On trunks of trees, and on the grouud. Rare, but found oceasionally in most parts of England. Stem often divided, so as to produce many spurious pilei.
6. L. vulpinus, Fr.; sessile, imbrieated ; pilei fleshy, tough, eonehate, eonnate behind, longitudinally rough with rigid points, tan-coloured; margiu incurved, entire; gills torn, white.-Sow. t. 361 .

On stumps of trees. Rare. On an elm-stump, Margate. Pileus very rough. Spores white.
7. L. flabelliformis, Pr.; subsessile; pileus thin, tough, reniform, plane, smootl, fawn-eoloured ; margin erenato-fimbriate ; gills broad, torn, pallid.-Bolt. t. 157.

Ou stumps. Rare. I have never seen this speeies. Perhaps Bolton's plant may be only Agaricus salignus.

14. PANUS, $F r$.

Pileus fleshy, but tough, at length drying up. Gills tough. Edge acute, entire. Hymenophorum homogeneous with the stem.

1. P. torulosus, Mr.; pileus fleshy, then tough, eoriaccous, funnel-shaped, flattened, sometimes dimidiate, even, paleochre, frequeutly shaded with pink; stem short, oblique, elothed with grey down ; gills deeurrent, rather distant, distinet behind, ruddy, then tau-coloured.-Batsch, f. 33 ; Bolt. t. 146.

On old stumps of various trees. Not uneommon. Very variable in point of colour, sometimes quite as bright as in

Batsch's figure, sometimes shaded very slightly, if at all, with pink.
2. P. conchatus, $F r$.; pilcus flesly, but tough, thin, unequal, excentric and dimidiatc, cinnamon, then turning palc, at length squamulose ; stem short, unequal, pubescent at the base; gills decurrent, forming lines on the stem, somewhat branched, pinkish-whitc, then ochraceous.-Bull. t. 298, 517 O, P.

On trunks of trees. Rare. Margate, etc. Not always so much coloured, or so much inclincd to be scaly, as is intimated by the specific character, or by Bulliard's plate. Always, howcycr, casily known, by its conchate form and tougher substance, from similar species of the genus Agaricus. A. inconstans, P., is merely a form of this species.
3. P. stypticus, $F r$.; pilcus kidney-shaped, coriaccous, cinnamon, turning pale; cuticle breaking up into mealy scales; stem short, lateral, dilated upwards; gills determinate, thin, crowded, conuected by vcins, cinnamon.-Sow. t. 109 .

On stumps, dead trees, etc. Extremely common.

15. XEROTUS, $F r$.

Hymenophorum confluent with the stem. Gills tough or coriaceous, dichotomous. Edgc obtusc, entirc.

1. X. degener, Pr.; pilcus coriaceo-membranaceous, planodepressed, flocculose, hygrophanous, striate when moist; stem slender, solid, velvety ; gills fold-like, branched, very distant, palc.-Sow. t. 210.

In peat-mosscs. I am not acquaintcd with this plant.

16. SCHIZOPHYLLUM, Fr.

Gills coriaceous, split longitudinally, with the two divisions revolute, or sprcading.

1. S. commune, Fr .; pileus adnate behind, simple, and lobed; gills grey, then brownish-purple, the divided surfaee villous, the edge revolute.-Sow. t. 183.

On dead wood, mostly sueh as has been imported. I have seen this beautiful plant in profusion on foreign wood, but I have never gathered truly British specimens, whieh are extremely rare.

17. LENZITES, $F r$.

Corky or coriaceous. Gills firm, often anastomosing, and forming spurious pores. Edge entire.

1. L. betulina, Fr .; pileus between eorky and eoriaceous, firm, somewhat zoned, tomentose, turning pale; margin of the same eolour ; gills straight, somewhat braneled, anastomosing, pallid. (Plate 15, fig. 3.)

On stumps, old rails, ete. Very common. Varying greatly in eolour, in the degree of lardness, and in the anastomosing of the gills. Often quite resupinate, and then very deeeptive.
2. L. flaccida, $F r$.; pileus thin, coriaeeous, flaceid, unequal, zoned, hairy, turning pale; margin of the same colour' gills broad, erowded, unequal, and branched, white, then pallid.Bull. t. 394; Bolt. t. 158.

On stumps. Not uneommon. Running by almost impereeptible gradations into the last.
3. L. sepiaria, Fr.; pileus hard, eoriaceous, zoned, stri-goso-tomentose, rough, bright brown; margin and the thiekish branehed anastomosing gills tawny.-Sow. t. 418.

On fir-wood, mostly imported. Oceurring sometimes in great quantities on fir-poles, on railway platforms, etc.
4. L. abietina, Fr.; pileus thin, coriaceous, effuso-reflexed, umber, elothed with umber-coloured down, at length smooth and whitish ; gills simple, deeurrent, unequal, brownish, with a glaueous bloom.-Bull. t. 442.f. 2.

On deals. Glasgow, Klotzsch. Very distinct from the last. Not at all tarny.

Order 2. POLYPOREI.

Hymenium lining the cavity of tubes or porcs, which are sometimes broken up into teeth or concentric plates.
18. boLetus, Fr.

Hymenophorum quite distinet from the hymenium. Trama obsolete. Hymenium lining the eavity of tubes separable from one another and from the hymenophorum.

1. Spores ochraccous.

* Pileus covered with a viscid pellicle; stem solid, neither reticulated nor bulbous.

1. B. Iuteus, L.; pileus gibbous, then pulvinate, smeared with a brown evaneseent gluten; stem dirty-yellow, equal, firm, dirty-white, rough with dots above the broad, membranaeeous, whitish-brown ring; tubes adnate, minute, simple, yellow.-Schaeff. t. 114; Kromb. t. 33.

In fir-woods. Fries says that this has been found once only in Grcat Britain, but it is our eommonest species.
2. B. elegans, Schum.; pileus convcxo-planc, viscid, golden-
yellow, and slightly ferruginous; stem firm, unequal, goldenyellow, at length rufors, dotted above the fugaeious, white, then yellowish ring; pores decurrent, shining, minute, simple, golden-sulphur.-Grev. t. 183; Kromb. t. 34. f. 1-10; Huss. ii. t. 12 .

In mixed woods. Far less common, and more beautifully eoloured than the last.
3. B. flavus, With.; firm; pileus elothed with yellow evaneseent gluten ; stem yellow, then brown, eribrose at the tip with the decurrent tubes, whieh are rather large, angular', and yellow.-Sow. t. 265.

In woods. Common. Requires to be carefully distinguished from B. luteus.
4. B. larieinus, B.; pileus dirty-white, with livid stains, eovered at first with dirty-yellow or brownish evaneseent slime, subsquamose; stem eribrose above the ring, serobienlate below, dirty-white; tubes adnate, subdeeurrent, compound, at first nearly white.-Huss. i. $t .25$.

Amongst larch-trees. Common. Flesh white, very slightly tinged with yellow.
5. B. granulatus, L.; pileus eonvex, expanded, glutinous, brown-ferruginous, and when the gluten vanishes yellowish; stem without any ring, yellowish, punetato-granulose above; tubes adnate, short, simple, yellow, orifiec granulated.-Sow. $t .420$.

In grass, amongst firs. Not common. Dorsetshire, ete. Often densely gregarious. Orifiees of tubes at first dripping with a milky fluid. Spores ochraeco-ferruginous.
6. B. bovinus, L.; pileus nearly plane, smooth, viseid, reddish-grey; stem equal, even, self-coloured; tubes subdeeurrent, angular, compound, greyish-ycllow, then ferruginous. -Kromb. t. 75. f. 1-6; Huss. i. t. 34.

Heathy fir-woods. Dorsetshire, ete. Gregarious. Pileus often tinged with purple. Spores nearly yellow. Stem of the same colour as the pileus, but streaked with watery lines.
7. B. badius, Fr. ; pileus soft, pulvinate, viseid, bay-tawny; stem solid, nearly equal, even, paler, pruinose with brown meal ; flesh turning partially blue; tubes adnate or sinuatodepressed, rather large, angular, dingy-yellow, white, then green.-Kromb. t. 36. f. 15.

In pine-woods. Rare. Birmingham, Mr. H. Matthews. Pileus viscid in wet, shining in dry weather.
8. B. sanguineus, With.; pileus eonvcxo-plane, even, smooth, viseid, blood-red ; stem equal, even, variegated with yellow, and blood-red; tubes adnate, broad, unequal, yellow-orange.-With. iv. p. 319 ; Sow. t. 225.

In woods. Rare. I have never found this species. Withering says nothing about the viseid pileus.
9. B. piperatus, Bull.; pileus eonvexo-plane, smooth, slightly viseid, yellow, inelining to reddish-grey; stem slender, even, brittle, yellow within and at the base; tubes subdeeurrent, large, angular, ferruginous.-Sow. t. 34.

In woods. Not very common. Smaller than any of the foregoing. Taste hot and peppery.

** Pileus more or less tomentose.

10. B. parasiticus, Bull.; parasitie; pileus hemispherieal, slightly silky, dirty-yellow, as well as the ineurved, rigid stem; tubes decurrent, middle-sized, rounded, eompound, golden-yellow. (Plate 15, fig. 4.)

On speeies of Elaphomyces. Rare. Clifton, C. E. B. Abundant in Kew Gardens, 1859. Pileus often eracked. Flesh yellow, becoming ruddy when dry. Not at all viseid.
11. B. variegatus, Fr.; pileus convcxo-plane, obtuse,
moist, tawny-yellow, sprinkled with superfieial faseieulatopilose seales ; margin aeute, at first floceulose ; stem ringless, equal, even ; tubes adnate, unequal, minute, brownislı-cimnamon, then pallid.-Kromb. t. 34. f. 15-18.

In pine-woods. Not common. Helensburgh, Klotzsch. Dorsetshire. Sometimes nearly smooth.
12. B. striæpes, Sec.; pileus eonvex, then plane, soft, silky, olive; eutiele ferruginous within; stem curved, firm, yellow, with brownish-black strix, brownish-rufous at the base; tubes minute, angular, at length green; orifiee yellow.

In woods. Rare. Coed Coch. Stem dirty-yellow, dotted under a lens with broad bay lines. Flesh white, red near the cuticle, sparingly ehanging to blue.
13. B. chrysenteron, Fr. ; pileus eonvexo-plane, soft, floe-eoso-squamose, brownish, inclining to briek-red ; flesh yellow, red near the eutiele; stem nearly equal, rigid, fibroso-striate, searlet or yellow; tubes subaduate, rather large, angular, unequal, yellowish-green.-Bull. t. 4.90. f. 3 ; Huss. i. $t .5$.

In meadows, woods, ete. Extremely common.
14. B. subtomentosus, L. ; pileus pulvinate, expanded, soft, dry, villoso-tomentose, somewhat olive, not red under the eutiele; stem stout, unequal, suleate, and ribbed minutely dotted and rough, yellow, as well as the broad angular adnate tubes.-Kromb. t. 37. f. 8-11.

In roods. Not so common as the last. Abundant at Coed Coch. In the former, when the pileus is eracked, the eraeks are red, in this yellow.
> *** Stem reticulated; tubes adnate or merely depressed, not rounded; orifice of tubes yellow.
15. B. calopus, Fr.; pileus globose, then pulvinate, not polished, subtomentose, olive ; stem firm, at first conieal, then
nearly equal, partially or wholly searlet, reticulated; tubes minute, adnate, angular, yellow.-Kromb. t. 37. f. 1-7.

In mixed woods. King's Cliffe. Extremely beautiful.
16. B. olivaceus, Scheeff.; pileus eonvex, even, at length smooth, olive-brown; margin at first inflexed; stem firm, elavato-bulbous, yellowish at the top, blood-coloured below, retieulate and punetate ; tubes adnate, short, minute, unequal, brown-olive.-Scheeff. t. 105.

In woods. Rare. Purton, in the 'Midland Flora.'
17. B. pachypus, Fr .; pileus pulvinate, dry, subtomentose, brownish, then pallid-tan ; stem thiek, firm, retieulated, variegated with yellow and red; tubes somewhat elongated, shorter near the stem, almost free, yellow; orifice of the same eolour.

In woods. Not eommon. Seotland, Klotzsch. Fleshy, ehauging partially to blue.

**** Orifice of tubes red.

18. B. Satanas, Lenz.; pileus pulvinate, smooth, slightly viseid, brownish-tan, then nearly white; stem blunt, ovatoventrieose, retieulated above, blood-red; tubes free, minute, yellow; orifice from the beginning blood-red.-Lenz. f. 33 ; Huss. i. $t .7$.

In woods. Not eommon. King's Cliffe, 1848, 1858. A large, poisonous speeies.
19. B. luridus, Fr.; pileus pulvinate, tomentose, umberolive, then somewhat viscid, dingy ; stem stout, vermilion, either metted or dotted; tubes free, round, yellow, then green ; mouth vermilion, then orange. (Plate 15, fig. 5.)

In woods and woodland pastures. Very eommon. Poisonous. Changes rapidly to blue when eut or bruised.
20. B. erythropus, P. ; pileus tomentose, alnost velvety,
tawny; stem elongated, dotted with red, not retieulate, red within at the base and partially elsewhere; tubes free.

In woods. King's Cliffe, ete. Flesh yellow here and there, blue when eut, but partially red. Far more beautiful than the last.
21. B. purpureus, $F r$.; pileus pulvinate, somewhat velvety, opaque, dry, purple-red; stem stout, variegated with purple veins or dots; tubes minute, nearly free, yellow, ehanging to green, orifiee purple-orange.-Kromb. t. 37. f. 12-1.5.

In woods. Rare. King's Cliffe, 1845. Extremely beautiful. All the above four speeies are found oeeasionally in the same wood, whieh eonsists prineipally of Tilia parvifolia.
***** Esoulent; tubes rounded behind; mouth of the same colour.
22. B. edulis, Bull.; pileus pulvinate, smooth, moist, brownish; stem stout, retieulated, pale brown ; tubes half-free, elongated, minute, at first white, then yellow and green. (Plate 15, fig. 6.)-Huss. i. t. 81.

In woods. More frequent in the south of England than the north. Eseulent. The large size, truly netted stem, smooth pileus, and agrecable nutty flavour, easily distinguish this speeies.
23. B. impolitus, Fr.; pileus pulvinate, dilated, floeeulose, dingy, pallid, at length granuloso-rivulose; margin obtuse; stem short, stout, eompaet, even, pallid; tubes nearly free, ver'y long, yellow, not retieulated.-Kromb. t. 74. f. 10, 11.

On woodsides, ete. Not eommon. Under oaks. King's Cliffe. Grows to a large size. Flesh more or less ehanging to blue when eut. Fries speaks of his plant as sweet to the taste; mine has the taste of sprouting walnuts, and is exaetly the plant of Krombholz.
24. B. æstivalis, $F r$. ; pileus pulvinate, silky, soft, at length
rivulose, opaque, minutely granulated and silky, pallid-tan; stem stout, firm, somewhat conieal, even, pallid, white, as well as the minute, elongated, equal tubes.-Huss. ii. $t .25$.

In woodland pastures. King's Cliffe. Kent, Mrs. Hussey. A large speeies. The flesh, I believe, never beeomes blue.
2. Spores subferruginous.
25. B. viseidus, L.; pileus pulvinate, soft, smooth, viseid, dirty-yellow ; veil subannulate, torn, white, appendieulate; stem retieulate above; tubes wide, adnate, unequal, livid.

In woods. Rare. Bristol, Dr. Stephens.
26. B. versipellis, Fr.; pileus pulvinate, dry, at first elosely tomentose, then sealy, and smooth in the interstiees; veil membranaceous, annular, inflexed, appendieulate ; stem solid, attenuated upwards, rugoso-squamose; tubes free, plane, minute, dirty-white.-Sow. t. 110.

In woods. Not uneommon. Pileus of a beautiful orange. Too nearly, perhaps, allied to the next.
27. B. seaber, Fr.; pilcus pulvinate, smooth, viscid when moist, at length rugulose or rivulose; margin veiled; stem solid, attenuated upwards, rough with fibrous seales; tubes free, convex, round, minute, white, then dingy.-Vitt. t. 28. Huss. i. $t .57$.

In woods. Extremely eommon. Generally smaller than the last.

3. Spores rose-coloured.

28. B. alutarius, Fr.; pileus pulvinate, expanded, soft, velvety, then smooth, brownish-tan ; flesh white; stem solid, bulbous, nearly even, white, together with the pitted apex and round plane short tubcs, whieh are depressed round the stem, and beeome brown when bruised.-Kromb. t. 74. f. 8, 9 .

In woodland pastures. Rarc. Kent, Mrs. Hussey.
29. B. felleus, Bull.; pileus soft, pulvinate, smooth, even, brown, inclining to reddish-grey ; stem solid above, attenuated, retieulated; tubes adnate, convex, elongated, angular, fleshcoloured, as well as the substance of the pileus when broken. -Bull. t. 379.

In woods. Rarc. King's Cliffe. Taste bitter.

4. Spores white.

30. B. cyanescens, Bull. ; pileus convexo-expanded, elosely tomentose or floccoso-squamose, opaque, tan, becoming brownish; flesh eompaet, white, dark blue when broken; stem stuffed, then hollow, ventricose, villoso-pruinose, of the same colom', constricted above, even, white; tubes free, minute, round, white, then yellow.-Bull. $t .369$.

In woods. Not found since the time of Sibthorpe.
31. B. castaneus, Bull.; pileus eonvex, cxpanded or depressed, opaque, velvety, cinnamon as well as the stem, which is stuffed, then hollow, attenuated from the somewhat bulbous base; flesh white, unehangcable; tubes free, short, round, white, then dull-yellow.-Bull. t. 328 ; Huss. ii. t. 17.

In woods. Rare. A small species.

19. STROBILOMYCES, B.

Hymenophorum quite distinet from the hymenium. Pileus fleshy, at lengtl tough. Spores globose or broadly elliptic, minutely rough.

1. Strobilomyces strobilaceus, B.; blackish-umber; pileus pulvinate, rough with thiek floecose scales; stem equal, veiled, sulcate above; tubes adnate, white, angular, whitish-brown.Dicks. Cr. i. t. 3. f. 2.

In fir-woods. Very rare. Bullstrode, Lightfoot. Spores very dark.

20. POLYPORUS, $F r$.

Hymenophorum descending into the trama of the pores, which are not easily, if at all, scparable, and changed with them into a distinct substance.

1. Stem central; pileus cntire.

1. P. brumalis, $F r$.; pileus fleshy, then coriaceous, somewhat umbilicate, zoneless, in the first season dingy-villous, in the second squamulose, becoming smooth, pallid; stem slender, hirsuto-squamulose, pallid ; porcs oblong and angular, slender, acute, denticulate, white.-Rost. t. 8.

On dead trunks and branches. Rare. Scotland. Portbury, near Bristol, C. E. B.
2. P. fuscidulus, Fr.; pileus flcshy, then tough, subcoriaceous, convcxo-plane, zoneless, even, brown, tinged with yellow; stem rather slender, cqual, smooth, attenuated, pallid; pores aduate, angular, somewhat rounded, obtuse, quite entirc, yellowish.-Bolt. t. 170.

Amongst chips, etc. Extremely rare. Darlington, $M r$. Robson. Pileus about 2 inches across.
3. P. leptocephalus, F.; pileus tough, coriaecous, convexoplane, thin, smooth, zoneless, even, pallid, then fawn-coloured; stem short, smooth, pallid; pores minute, rounded, obtuse, adnate, whitish.-Jucq. Misc. i. $t .12$.

On trunks of trees. Rare. Scotland, Klotzsch. Also found by Mr. Dickson.
4. P. lentus, B. ; pileus fleshy, but tough, umbilicate, minutcly scaly, especially at first ; stem hispid, furfuraccous, rather slender, incurved, central or excentric ; pores irregular, decurrent, white. (Plate 16, fig. 1.)

On old stenis of Ulex. Northamptonshire and Nottinghamshirc. Not uncommon. Allicd to P. squamosus.
5. P. Sehweinitzii, Fr.; pileus thick, spongy, then eorky, strigoso-tomentose, rough, bright-brown; stem thiek, very short or obsolete, ferruginous ; pores large, often torn and irregular, sulphur-green.-Sv. Bot. t. 720.

Amongst the roots of pines. Very rare. Dorsetshire, C. E. B. The first specimens fonnd, whieh exaetly agree with P. Schweinitzii, var. dimidiatus, were referred, beeause of the total absenee of a stem, to P. Herbergii, Rostk.
6. P. rufescens, Fr.; flesh-eoloured; pileus spongy, then eorky, soft, unequal, hairy ; stem short, irregular ; pores large, sinuated and torn, white, tinged with flesh-colour.-Sow. 190.

On the ground, about stumps. Not uneommon. Sometimes very lbeautiful. Stem often lateral, and in densely imbrieated speeimens sometimes obsolete.
7. P. perennis, $F r$.; einnamon, then bright-brown ; pileus eoriaceous, then plano-infundibuliform, velvety, at length smooth, zoned ; stem firm, thiekened below, velvety; pores minute, angular, aeute, at first veiled with a white substanee, then naked and torn.-Sow. t. 192 ; Huss. i. $t .51$.

On the ground and on stumps, mostly in subalpine countries. Not uneommon.

2. Stem lateral.

8. P. squamosus, $F r$.; pileus fleshy, but tough, flabelliform, expanded, pallid, variegated with broad, adpressed, spot-like, eentrifugal seales; stem exeentrie and lateral, blunt, retieulated above, blaek at the base; pores thin, irregular, at length broad, angular, and torn, pallid.-Grev. t. 207. Huss. i. t. 33.

On trunks of trees, especially Ash. Extremely eommon.
9. P. Rostkovii, Fr.; pileus fleshy, but tough, dimidiate, somewhat infundibuliform, smooth, even, dingy; stem long, excentrie, retieulated, abruptly black, thiekened at the base ;
pores deeurrent, broad, pentagonal, aeute, toothed, whitc, then dirty-yellowish.-Rostk. t. 17.

On old stumps. Rare. Apcthorpe, Northamptonshire. Mueh thinner than the last.
10. P. pieipes, Fr.; pileus fleshy, but coriaccous, rigid, tough, eren, smooth, depressed behind and in the eentre ; stem excentrie and lateral, equal, firm, at first velvety, then naked, dotted black up to the round, small, tender, white, then red-dish-grey tubes.-Grev. t. 202.

On trunks of trees. Not uneommon. Pileus oehraeeous or rufous.
11. P. varius, Fr. ; pileus fleshy, but tough, thin, soon woody, smooth, somewhat virgate, irregular, depressed behind or in the eentre; stem excentrie and lateral, even, smooth, beeoming gradually einereous downwards; pores decurrent, minute, short, round, unequal, whitish, then watery-cinna-mon.-Bolt. t. 168.

On trunks of trees. Not uncommon.
12. P. elegans, Fr.; pileus equally fleshy, soon hard and woody, flattened out, even, smooth, self-eoloured ; stem exeentrie or lateral, even, smooth, pallid, from the first abruptly blaek at the base, rooting ; pores plane, minute, nearly round, whitish-yellow, beeoming pallid.-Bolt. t. 83.

On trunks of trees. Not uneommon. The limits of these three speeies are, however, very difficult to seize. P. nummularius, whose pileus seareely exceeds an inel in diameter, and is oeeasionally almost velvety when young, though quite smooth when old, has, perhaps, quite as great pretensions to be separated as a speeies.
13. P. quereinus, $F r$. ; pileus soft, eorky, tongue-shaped, very thick, convexo-planc, even, at first flocculoso-grauulated, tan-coloured, becoming pallid, narrowed belind into a thick,
horizontal stem ; pores short, minute, dirty-white.-Huss. i. t. 52.

On old oaks, with Fistulina lepatica. Rare. Apethorpe, Norths. Kent, Mrs. Hussey. A most distinet speeies.
14. P. lucidus, Fr.; pileus eorky, flabelliform, suleatorugose, yellow, then sanguineous, ehestnut, varnished and shining, as well as the lateral stem; pores determinate, long, minute, fhite, then einnamon. (Plate 16, fig. 2.)

On the ground, about old stumps. Not uneommon. Extremely beautiful when well grown. Very eommon in the tropies. Stem very variable in length and position.
3. Pilei numerous, springing from a common trunk, and arising from the subdivision of the primary pileus.
15. P. intybaceus, Fr. ; very mueh branehed, fleshy, rather brittle; pileoli very numerous, dimidiate, stretehed out, sinuate, at length spathulate and nearly even, greyish-brown ; stems minted into a short trunk; pores firm, obtuse, white, beeoming brown.-Huss. i. $t, 6$.

On trunks of trees. Very rare. Inverary, Rev. C. Smith. Kent, Mrs. Hussey, ctc. Esculent.
16. P. cristatus, $F r$.; branehed, fleshy, firm, brittle ; pileoli entire and dimidiate, imbrieated, depressed, between villous and pulverulent, then rimoso-squamose, brown, tinged with green ; stems connate, irregular, white ; pores minute, angular and torn, dirty-white.-Rostk. t. 16.

In beeeh-woods. Very rare, Dickson.
17. P. giganteus, Fr.; imbrieated, fleshy, but tough, then subeoriaecous ; pilei dimidiate, very broad, somewhat zoned, rivulose, bright-brown, depressed behind; stems bramehed, eonnate from a eommon tuber; pores minute, nearly round, pallid, at length torn.-Huss. i. t. 82.

On trunks of trees, etc. Rarc. Kew. Coed Coch, etc. Surface of the pileus rough with little granules or scales. Extremely handsome.
18. P. sulfureus, $F r$.; imbricated, of a cheesy consistence, soon growing pale and cracking ; pilei very broad, undulated, nearly smooth, ruddy yellow; pores minute, plane, sulphureoloured, at length torn. (Plate 16, fig. 3.) -Huss. i. t. 46.

On trunks of various trees. Common. Stem generally obsolete. When dry, often covered with little erystals.
19. P. alligatus, Fr .; cæspitose, of a fibrous, chcesy consistence, rigid, but brittle ; pilei imbricated, unequal, zoneless, villous, tan-eoloured, inelining to red; pores minute, soft, white, easily obliterated by floeei.-Sow. t. 422.

At the base of trunks. Rare. I am not convinced that Fries and Sowerby have the same species in view.
20. P. heteroelitus, $F r$.; cæspitose, coriaceous ; pilei sessile, expanded on all sides from a common radical tubercle, lobed, villous, zoneless, orange ; pores irregular and elongated, dull golden-yellow.-Bolt. t. 164.

On the ground, under oaks. I am not acquainted with this species.
21. P. salignus, Fr.; imbricato-cæspitose, corinecous, but soft; pilei dimidiate, dilated, kidney-shaped, dirty-white, elothed with depressed down, swollen, sulcato-depressed about the somewhat lobed margin; pores thin, crowded, clongated, flexuous, intricate, white.-Bolt. t. 78.

On willows. Not uneommon. Edinburgh, Dr. Greville, etc.

4. Stemless.

* Anodermbr.-Pileus at first juiey. Cuticle none.

22. P. ehioneus, $F r$.; white ; pileus fleshy, soft, zonelcss, at length even and smooth, somewhat stretehed out behind;
margin aeute, inflexed; pores short, round, equal, quite entire.

On trunks. Scotland, A. Jerdon. Bath, C. E. B. Thin, about an inch aeross.
23. P. fragilis, Fr. ; dirty-white, spotted with brown when touched; pileus fleslyy, fibrous, brittle, plano-depressed or versiform, rough with fibres, eonvex below ; pores thin, elongatoflexuous, intrieatc.

On fir. Cornwall, Mr. Ralfs.
24. P. cæsius, $F r$.; white, here and there tinged with blue; pileus flesliy, soft, tough, unequal, silky ; pores small, unequal, elongato-flexuous, torn and toothed.-Sow. t. 226 .

On fallen sticks, ctc. Not uncommon. About an inel across, sometimes resupinate. Spores green.
25. P. destructor, Fr.; pilcus fleshy, watcry, brittle, effusoreflexed, wrinkled, dirty-white, tinged with brown, zoned within; pores long, rounded, toothed and torn, dirty-white.

On larch and Scotch fir. Scotland, Mrs. Wynne. Northamptonshire, in several localities. Sometimes almost resupinate or effuse, with seareely any free margin.
26. P. nidulans, $F r$.; pilcus fleshy, but tough, very soft, somewhat pulvinate, villous, then nearly even, zoncless, red-dish-grey, of the same colour within; pores long, middlesized, uncqual, angular, tawny, inclining to tile-red.

On fallen sticks. Not common. Sherwood Forest, on mountain ash. A resupinate form was sent from Scotland by Dr. Bauchop.
27. P. rutilans, $F r$.; pileus fleshy, but tough, thin, soft, at first villous, then smooth, zoncless, tawny-einnamon, turning pale, of the same colour within; pores short, minute, thin, equal, acute, eimamon.-Pers. Ic. et Descr. t. 6. f. 4.

Ou fallen branehes. Not common. Wynnstay. Denbighshire. When fresh, has a sweet seent, like that of anise.
28. P. fumosus, $F r$.; pileus fleshy, then rather eorky, firm, zoneless, silky, at length smooth, undulated, dingy, pale umber, dilated and adnate behind; fibrous within and zoned ; pores short, round, minute, dirty-white, darker when bruised.

On stumps of trees. Very eommon. Smell oppressive.
29. P. adustus, $F r$.; pileus fleshy, tough, firm, thin, villous, einereous, pallid; margin straight, at length blaek, effusoreflexed behind; pores short, minute, round, obtuse, dirtywhite and pruinose, then einereous-brown.-Sow. $t .231$.

On stumps of trees. Not uneommon. P. carpineus is a thin, yellowish variety.
30. P. crispus, Fr.; pileus fleshy, but tough, eoriaecous, rugose, einereous, effuso-reflexed behind ; margin thin, erisped, at length blaek; pores rather large, unequal, at length labyriuthiform, silvery-einereous.-Batsch, $f .227$.

On stumps. Less common than the last. Very nearly allied to it.
31. P. adiposus, B. and $B r$.; white, here and there aequiring a foxy tinge; pileus soft, waxy, shortly reflexed, obseurely tomentose; hymenium rather thick; pores small; edge obtuse.

On the ground. Warıiekshire, Rev. A. Bloxam. Coed Coch. Turns brownish in drying. Pores not stratose.
32. P. amorphus, Fr.; pileus fleshy, but tough, thin, generally effuso-reflexed; pores minute, unequal, golden-yellow, at first dusted with white.-Sow. t. 423.

On the ground, amongst pine-leaves. A most beautiful, but small speeies. Sowerby's plant is not so bright in eolour as the more usual form.
33. P. hispidus, Fr.; pileus eompaet, fleslyy, but spongy, dimidiate, pulvinate, hispid, ferruginous, fibrous within, the fibres diverging; pores minute, rounded, inelined to sepa-
rate, fimbriated, paler than the pileus.-Sow. t. 345. Huss. i. t. 29, 31.

On trunks of living trees. Very common. Very dark when old. Spores ycllow.
34. P. spumeus, Fr.; dirty-white ; pileus flcshy, but spougy, compact, pulvinate or convexo-planc, wrinkled, hispid, flesh white; pores seceding, minute, round, acute, entire. (Plate 16, fig. 4.)-Sow. t. 211.

On trunks of various trees. Not common. Very variable in form. Slightly zoned within.
** Placodermer.-Pileus indurated, clothed with a more or less decided crust.
35. P. dryadeus, $F r$.; pileis rather soft, spongy, then corky, thick, pulvinate, subferruginous, turning brown; cuticle thin, soft, pitted, then even and smooth; fleslı fibrous, somewhat zoned, ferruginous as well as the very long, slender, round, soft pores ; orifice at first paler.-Bull. t. 458. Huss. i. t. 21.

At the foot of old oaks. Not uncommon. Often studded with drops of moisturc. Spores white. Cutiele not so manifest as in several allied species.
36. P. betulinus, Fr.; pileus fleshy, then corky, ungulate, obtuse, smooth, zoncless, covered with a thin, even, brownish, minutely scabrous cuticle; vertex oblique, forming a sort of umbo; pores short, minute, round, unequal, white, at length seceding.-Grev. t. 246.

On birch-trecs. Not uncommon. Makes excellent razorstrops.
37. P. pallescens, $F r$.; pileus fleshy and spongy, at length eorky, thin, zoneless, cven, smooth, yellowislı; margin acute, of the same colour ; pores short, minute, roundish, white, at length yellowish.-Sow. t. 230.

On old stumps. Not common. A small speeies, rescmbling some states of P. fumosus.
38. P. vegetus, $F r$. ; pileus broad, dilated, smooth, opaquebrown; annual zone broad, eoneentrieally sulcate ; substanee floccose, loose, very thin; cutielc of the seeond season thiek, separable; pores minute, seceding, umber, the stratum of eael year being separated by a floeeose mass.

On lime-trees. Seotland, Klotzsch.
39. P. applanatus, Fr.; pileus flattened, tuberculate, obsolctely zoned, pulverulent or smooth, einnamon, bccome whitish, elothed with a rigid, erustaeeous, and at length brittle skin, very soft within, loosely floceose ; margin swollen, white, then cinnamon; pores very small, subferruginous; orifiec dirtywhite, brownish when bruised.

On trunks of trees. . Seotland, Klotzsch. Bristol, Oxford, ete. A large plant, with abundant ferruginous pores, and very soft, often pale, silky flesh.
40. P. fomentarius, $F r$.; pileus ungulate, dilated, thick, remotcly zoned concentrieally, smooth, opaque, dingy, then whitish, soft and floccose within, of a tawny-fcrruginous; eutiele thiek, very hard, persistent; margin and very long miunte pores distinetly stratose, at first pruinose, then ferru-ginous.-Sow. t. 133.

On trunks of trees. Common. Spores dark.
41. P. nigricans, $F r$.; pileus pulvinatc, very thiek, elosely and coneentrieally suleatc, smooth, shining, blaek ; ernst very hard, laeeate, persistent; substance ferruginous, cxtremely hard; margin very obtuse, ferruginous, as well as the very small, plane, confluenti-stratose, naked pores.

On birch-trecs. Scotland, Klotzsch. Not found, I belicve, by any one elsc. A neater and more shining plant than the following.
42. P. igniarius, Fr .; pileus even, clothed with a thin flocculent coat, which soon becomes white, at length ungulate, ferruginous, changing to brownish-black, opaque; skin close; surface uneven, very hard, as well as the zoned ferruginous flesh; margin rounded; pores very minute, convex, stratose, einnamon, at first whitish.-Sow. t. 132.

On willows, poplars, plums, etc. Extremely common. Mycelium and spores white, by which latter circumstance, as well as by other claracters, it is clearly distinguished from P. fomentarius. Often resupinate.
43. P. Ribis, Fr. ; pileus corky, coriaccous, rather soft, flattened, velvety, nearly even, ferruginous, then umber, tamny within, as well as the sharp margin, and short, small, naked pores.

At the base of currant- and gooseberry-trecs. Very common, lasting scveral years.
44. P. conchatus, $F r$.; pileus corky, hard, thin, effused, subconchiform, reflexed, concentrically sulcate, tomentose, bright brown ; margin acute; pores short, small, cinnamon.

On trunks of various trees. Not uncommon.
4.5. P. salicinus, $F r$.; pileus woody, very hard, undulated, smooth, in great part resupinate ; margin short, obtuse, patent, cimnamon, then brown ; pores very small, round, ferruginous, cinnamon.

On willows. Common. Very difficult to distinguish from the last, which also grows on willows. Both are frequently resupinate. Crust black.
46. P. ulmarius, Fr.; pileus corky, hard, undulated and tuberculate, crustaceous or pileate, smooth, at first white without and within ; pores decurrent, minute, round, stratose, ycllowish salmon-coloured. (Plate 16, fig. 5 : plant of the second scason.)-Huss. i. t. 64.

In old elm-trunks. Common. Very variable as regards the colour of the pileus when old. Pores always eoloured.
4.7. P. fraxineus, Fr.; pileus eorky, hard, smooth, flattened, white, then rubiginous and brown, at first even, then eoneentrieally suleato-plieate, pallid within; pores minute, short, rufous, at first elothed with white sebaceous villosity, as is also the margin.

At the base of ash-trees. Not uneommon. I have seen this speeies a yard in diameter, and marked with concentrie furrows, indieating the periods of growth.
48. P. cytisinus, B.; large, imbrieated; pileus eoarsely tubereulated, hard, woody ; margin subacute ; substance nearly white, as well as the minute pores.-Sow. t. 288.

At the foot of a laburnum. London. Quite smooth, at least when dry. A foot or more aeross. Allied to the last.
49. P. variegatus, $F r$.; pileus corky, hard, smooth, flattened, even, zoneless, shining, variegated with orange and bay, pallid within; pores round, minute, short, unequal and torn, yellowish.-Sow. t. 368.

On trunks of trees. I am not aequainted with this speeies.
50. P. cervinus, P.; effused, very broad ; pileus somewhat reflexed, zoncd, cinereous-umber, elothed with spongy down; pores large, various, greyish ; disscpiments rigid.-Myc. Eur. ii. $p .87$.

On fallen branches of beceh. Not uneommon. Oswestry, Rev. T. Salwey. King's Cliffe, ete. Not properly fawneoloured.
51. P. annosus, Fr.; pileus woody, eonvex, then flattened, rough with tubereles, in the first season brown, silky, in the second and when old covered with a rigid, smooth, black erust; substance white; margin obtuse, whitish, as well as the middle-sized, obtuse pores.

On stumps of larel, etc. Very common in some distriets. Extremely variable. Often resupinate; and then P. medullapanis of some authors. P. scoticus and P. subpileatus, Kl., are both forms of this species.
52. P. connatus, Fr.; pilci corky, hard, effuso-reflexcd, imbricated, somewhat zoned, coufluent, velvety, white without and within ; pores minute, roundish, white.

On old trunks of erab-trees, etc., running up them for one or two fcet. Often amongst moss. Not uncommon. The pilei are sometimes almost obliterated by the moss.

Inoderarer.-Pileus at first dry, clothed with a thin fibrous cuticle.
53. P. radiatus, $F r$.; pilcus corky, coriaccous, rigid, ra-diato-rugose, at first velvety, tawny, then smooth, ferruginousbrown; margin patent, waved; pores minute, pallid, with a silvery lustre, at length ferruginous.--Sow. t. 190.

On hazel-stems, ctc. Not very uncommon. Scotland, A. Jerdon. It has the colour of some of the Placodermei.
54. P. fibula, $F r$.; white ; pilcus coriaceous, tough, hairy, substrigose, zoneless; margin entire, acute; pores rather small, round, acutc, at length pallid.-Sow. t. 387. f. 8 .

On the door of a wine-cellar, Sowerby. I am not acquainted with this species.

55 . P. velutinus, $F r$.; pileus corky, coriaccous, plane on cither side, velvety, slightly zoned, white, at length ycllowish; margin acute, attenuated ; pores round, minute, then whitc.

On branches. Not common. Edinburgh, Dr. Greville.
56. P. versicolor, Fr .; pileus thin, coriaceous, rigid, flattened, depressed belind, velvety, shining in parts, variegated with different coloured zones; pores minute, round, acute and torn, white, at length pallid.-Huss. i. t. 24.

On stumps, branehes, etc. One of the most common species, and as variable as it is common. Some specimens are perfectly white, others yellowish, others cinereous-blue, etc. Some individuals approach near to P. zonatus, which has not, I believe, been found in this country. It is a far thicker and coarser plant. Sow. t. 367 is probably a pale form of this.
57. P. abietinus, $F r$.; pileus coriaceous, thin, effuso-reflexcd, villous, obsoletely zoned, cinereous-white; porcs unequal, torn, lilac, at length pale.-Grev. t. 221.

On trunks of Coniferce. Almost as eommon as the last in fir-woods, and sometimes very prctty. Extremely variable in form, but always easily reeognized.
58. P. Wynnei, B. and $B r$.; confluent, various in form ; pileus adnate behind, effuso-reflexed, then tan-colourcd, marked with silky raised lines; pores small, angular, white.

Ruuning over twigs, grass, etc. Rare. Cheshire. Coed Coch. Pores becoming pallid in drying. This species has somewhat the habit of P. amorphus, but is very different in substance.

5. Resupinate.

* Pores coloured.

59. P. contiguus, Fr.; effused, firm, at first obscurely cinnamon; circumferenee villous or fibrous, then smooth, ferruginous; pores middle-sized, equal, obtuse, entire.

On rotten wood and stieks. Not common. East Bergholt, Dr. Badham. P. cellaris, Desm., is probably the same specics. It lias been found at Oswestry by Mr. Salwey.
60. P. ferruginosus, $F r$.; cffused, firm, tawny, when old ferruginous, bright brown ; circumference barren; porcs elongated, roundish, middle-sized, cinnamon.-Grev. $t .155$.

On gate-posts, fallen sticks, etc. Common. Nycelium
oehraecous. In resupinate forms of P. igniarius the myeelium is white.
61. P. nitidus, Fr.; effused, thin, yellow; eireumferenec paler, formed of the interwoven myeelium ; pores minute, roundish, short, saffron-yellow.-Pers. Obs, ii. t. 4. f. 1.

On dead wood. Rarc. Bristol, Dr. Stephens.
62. P. Armeniacus, B.; suborbicular, confluent, extremely thin ; cireumferenee minutely downy; pores at first white, then deep buff.

On the bark of fir-trees. Appin, Capt. Carmichael. Pores often eonfined to the eentre.
63. P. bombycinus, $F r$.; effused, membranaceous, of a silky texture, dirty-yellow; eireumference byssoid; below velvety, arachnoid; pores large, angular.-Sow. t. 387. f. 5.

On dead wood. Not common. Portbury, C. E. Broome, Northamptonshire, etc. The pores vary a good dcal in size.
64. P. incarnatus, $F r$.; effused, eoriaceous, firm, smooth, flesh-eoloured ; pores rather long, unequal.-Pers. Myc. Eur. t. 16. f. 4.

On deeaying trunks of fir-trees. Rare. Edinburgh, $D r$. Greville. Pores of a fine flesh-eolour, approaching in some eases to orange.
65. P. purpureus, $F r$. ; broadly and widely effused ; myeelium mueedinous, floceulose, white, ereeping on the surface of the deeayed wood; pores short, minute, unequal, obtusc, seattered here and there or eonglomerate, purple-lilae.

On a decayed willow. Very rare. Cotterstock, Northamptonshire. P. undatus, Eng. Fl., is not the plant of Pers., but probably a state of P. igniarius.

** Pores white, or only becoming pallid.

66. P. cinctus, B.; white, turning pallid, forming little seattered patches, eaeh surrounded by radiating strigose fibres;
porcs extremcly minutc, angular; dissepiments extremely thin; edge ragged.-Mag. Zool. and Bot. i. t. 2. f. 3.

On old deal boards. Very rare. King's Cliffe. Some of the patches are barren, and some at length bccome confluent.
67. P. medulla-panis, Fr.; cffused, detcrminate, subundulated, firm, smooth, white ; circumfcrenec naked, immarginate, composed almost entircly of middlc-sized, rather long, entire porcs.

On decaying wood. Not uncommon if Sow. t. 387.f. 7 be the plant of Fries, as it ccrtainly is of Persoon.
68. P. vitreus, Fr. ; cffused, subundulatcd, indctcrminate, dirty-white, somewhat hyalinc; mycelium thin, scparable, matted togcther into a mass like kid leather; pores very small, round, long, obtuse, entirc.

On decayed wood. Rare. West of England, C. E. B.
69. P. obducens, Fr.; effuscd, incrusting, innatc, firm, white, composed entirely of very small, crowded, equal porcs, distinetly stratose; annual strata pallid-tan.

On rotten trunks. Not common. Bristol, C. E. B. Not to be confounded with resupinate P. connatus.
70. P. vulgaris, Fr .; widcly cffuscd, thin, dry, closcly adnate, even, white ; circumfcrence soon smooth, entircly formed of firm, crowded, ncarly equal porcs. (Plate 16, fig. 6.)

On dead wood and fallen branches. Not uncommon. Sometimes yellowish.
71. P. molluscus, Fr.; cffused, thin, soft, white ; circumferenec byssoid, composed of radiating fibrils; pores central or collected in patches, small, round, unequal and torn, turning pale.-Sow. t. 387. f. 9.

On dead wood. Rarc. Known by its radiating, byssoid margin. I lave found it, however, abundantly on larch, with the margin sometimes radiating, sometimes abrupt.
72. P. terrestris, Fr. ; effused, araehoid, byssoid, delieate, fugaeious, white; pores central, very small, at length rufous.

On the naked soil, or on rotten wood. Rare. Linlithgowshire, Dr. Bauchop.
73. P. vaporarius, Fr.; effused, innate; myeelium creeping amongst the tissue of the wood, floceose, white ; pores large, angular, white, turning pallid, erowded into a elose, firm, persistent stratum.

On fallen branehes Everywhere in woods.
74. P. aneirinus, $F r$.; effused, thin, subinnate ; circumference byssoid, white; pores large, eellular, waxy, angular, smooth, white, then tawny.

On fallen twigs. Rare. Edinburgh, Dr. Bauchop.
75. P. Stephensii, Fr.; oibieular, white, at length confluent; margin sometimes slightly reflexed, tomentose ; pores broad, nearly equal, angular; dissepiments rather thiek ; edge villous.

On twigs of privet. West of England, Dr. Stephens, C. E. B. A very fine speeies, resembling a resupinate Hexagonia. Pores one-twentieth of an ineh aeross.
76. P. Vaillantii, Fr.; white, thin; myeelium free, forming distinet strings, sometimes joined together by a membrane; pores erowded here and there, short, rather large, thin, unequal.-Sow. t. 326.

On dead wood. Very rare. Glasgow, Klotzsch. Easily known by its very peculiar myeelium.

21. TRAMETES, F.

Hymenophorum deseending into the trama of the pores without any ehange, whieh are permanently conerete with the pilcus. Pores entire.*

[^31]1. T. pini, Fr.; pileus corky, hard, pulvinate, eoneentrieally suleate, eraeked and pitted, rough, ferruginous-brown, then blaek, tawny-ferruginous within; pores large, roundish or oblong, yellow, inelining to red-brown.

On pine-trunks. Rare. Seotland, Klotzsch.
2. T. suaveolens, $F r$.; pileus eorky, rather soft, pulvinate, villous, zoneless, white ; pores round, rather large, obtuse, white, inelining to brown.-Huss. i. $t .43$.

On willows, limes, ete. Not common. Bristol, Dr. Stephens, ete. King's Cliffe. Smell like that of anisced.
3. T. odora, $F r$.; pileus eorky, elastie, uneven, gradually beeoming smooth, zoneless, pallid ; pores minute, round, equal, dirty-white, inclining to ochre.-Bolt. t. 162.

On willows. Rare. Bristol, Dr. Stephens. Very nearly related to the last. It has the same smell.
4. T. gibbosa, Fr.; dirty-white ; pileus corky, villous, obsoletely zoned, extended behind and gibbous; pores linear, straight, equal.-Sow. t. 194; Huss. ii. t. 4.

On gate-posts, stumps, ete. Rare. Bristol, C. E. B. Resembles somewhat thiek speeimens of Lenzites betulina. Very variable, however, in thiekness. Always truly porous, though the pores are elongated. Sowerby's plant grew at the foot of a poplar.
thin, of the same structure with the hynenophorum. These, however, are not elosely allied to Trametes, and have been separated by Fries under the generic name of Polystictus, the teehnical character being derived from the fact that the pores, whieh are developed in a eentrifugal direction, are perpendieular to the fibrillose stratum above the hymenophorum, whereas in Trametes the hymerophorum is not distinet from the rest of the pileus. I have retained for the present the arrangement proposed by Fries in the 'Epierisis,' though tho genus Polystictus will, in all probability, be ultimately adopted. No ineonvenience is likely to arise, as the genus Trametes includes so few British species.

22. D届DALEA, P.

Hymenophorum deseending into the trama without any ehange. Pores, when fully formed, torn, toothed, or labyrinthiform.

1. D. quereina, P.; pileus eorky, rugged, unequal, nearly smooth, of the same eolour within; hymenium at first porous, then broken up into waved or gill-like, labyrinthiform sinuses ; edge obtuse. (Plate 19, fig. 5.)

On oak-stumps, rails, ete. Not uneommon. Sometimes resupinate. Very near some states of Lenzites, but evidently belonging to the pore-bearing, rather than the gill-bearing series.
2. D. confragosa, P.; pileus eorky, eoriaceons, rather convex, seabrous, somewhat zonied, self-eoloured, brownish-red, subferruginous or wood-coloured within; hymenium porous, then labyrinthiform and torn, at length reddish brown.-Bolt. t. 160 ; Sow. t. 193.

On willows, serviee, ete. Rare. Bristol, C. E. B. King's Cliffe, ete. Sowerby's plant is the same with Boltou's.
3. D. unicolor, Fr . ; pileus eoriaeeous, eorky, villoso-strigose, einereous, with zones of the same colour ; sinuses labyrinthiform, flexuous, intrieate, aeute, then torn and toothed.Sow. t. 325 .

On stumps, ete. Very common.
4. D. latissima, Fr.; eorky, hard, thiek, undulated, red-dish-brown or pallid wood-eolour ; pores thin, distant, very obtuse, roundish and elongated, flexuous.-Sow. t. 424.

On dead branehes, or on the ground. Rare.

23. MERULIUS, Fr.

Hymenium soft, waxy, forming porous, retieulate, or sinuous, toothed folds.

1. M. tremellosus, Sclerad.; resupinate, then free or reflexed, of a tremelloid fleshy eonsistenee, white; margin den-tato-radiate ; folds porous, various, pinkish.-Huss. i. t. 10. Boletus arboreus, Sow. t. 346 .

At the base of deeayed trees. Rare. Apethorpe, ete. Sometimes the edge is beautifully tinged with pink, as in Mrs. Hussey's plant.
2. M. corium, Fr.; resupinate, effused, soft, thin, like paper ; cireumference at length free and reflexed, white and villous below ; lymenium retieulato-porous, flesh-coloured or pallid-tan.-Grev. t. 147.

On dead truuks, ete. Extremely eommon. Very variable.
3. IM. molluscus, Fr. ; effused, thin, soft, membranaceous ; margin byssoid, white ; folds flesh-eoloured, gyrated, and forming pores.-Pers. Myc. Eur. t. 14. f. 1, 2.

On dead wood. Rare. Penzance, Mr. Ralfs. Hymenium dark-brown when old.
4. M. Porinoides, Fr. ; crustaceous, adnate, thin ; cireumference byssoid, white; folds poriform, distant, dirty-yellow.Pers. Myc. Eur. t. 14. f. 7.

On dead wood, ehips, ete., or on the ground. Very rare. Bristol, C. E. B.
5. M. rufus, P.; erustaeeo-adnate, smooth, red-brown; circumference nearly naked, of the same colour, as also the uniformly porous hymenium.-Pers. Myc. Eur. t. 16. f. 1, 2.

On fallen oak-boughs. Bristol, C. E. B., ete. This has a very Polyporoid appearanee, and I am not eertain that it is anything more than a state of Dedalea confragosa, of whieh, I believe, Trametes rubescens is a synonym.
6. M. serpens, Fr.; erustaceo-adnate, thin, at length smooth, pallid, then reddish; eircumference byssoid, white; folds at first mere wrinkles, then forming entire angular pores.

On dead wood. Rare. Twyeross, Rev. A. Bloxam. Not separable, like M. corium.
7. M. pallens, B.; adnate, thin, inseparable, pale-reddish, fleshy, subgelatinous; folds poriform; margin indeterminate. -Ann. of Nat. Hist. ser. l. vol. vi. p. 358.

On fir-wood. Rare. Nottinghamshire and Leicestershire. Pores minute.
8. M. Carmichaelianus, B.; white, extremely thin, forming effused, entirely resupinate, irregular, interrupted, confluent patehes; folds forming regular angular reticulations; dull brown when dry.-Grev. t. 224.

On bark. Very rare. Appin, Capt. Carmichael. Forming a mere pelliele, with minute, often hexagonal, extremely shallow pores.
9. M. lacrymans, Fr.; large, fleshy but spongy, moist, ferruginous-yellow, arachnoid and velvety beneath; margin tomentose, white; folds ample, porous, and gyroso-dentate. (Plate 2, fig. 1.) -Huss. i. t. 3.

In cellars and hollow trees. Too common. Often dripping with moisture. Sometimes several feet in width. I do not consider M. pulverulentus more than a mere form of the same thing. Dry Rot is eaused mainly by this fungus.
10. M. aurantiacus, Klotzsch; pileus tough, earnoso-coriaceous, effuso-reflexed, zoned, tomentose, between yellow and dirty-white, here and there einereous; folds minute, subporiform, dull-orange.

On dead beceh-trees. Rare. Seotland, Klotzsch. Allied to the last.

24. POROTHELIUM, $F r$.

Hymenophorum mycelioid, covered with distinet papillæ, at first elosed, then open like pores.

1. P. Friesii, Mont.; effused, confluent, floceuloso-membranaeeous, white, inelining to tan-colour; eireumference simple ; papillæ immersed, yellowish, at length open, piteher-shaped.-Ann. de Sc. Nat. sér. 2. vol. v. p. 339.

On pine-wood. Very rare. Castle Semple, Klotzsch. Wraxall, Somersetshire, C. E. B. Wothorpe, Northamptonshire. Pores often erowned with a pellueid drop.

25. FISTULINA, Bull.

Hymenophorum fleshy. Hymenium inferior, at first papillose ; the papillæ at length clongated, and forming distinet tubes.

1. F. hepatica, F. ; fleshy and juiey, rootless ; pileus undivided, blood-1ed. (Plate 17, fig. 1.)-Huss. i. t. 65.

On trunks of old oaks. Common. Esculent. Sometimes attaining an enormous size. Tubes flesh-eoloured or yellowish.

Order 3. hyDNEI.

Hymenium spread over the surface of spines, teeth, persistent papillæ, ete., and not lining impressed pores or tubes.

26. HYDNUM, L.

Spines awl-shaped or eompressed, distinet at the base.

* Stem central.

1. H. imbricatum, L.; pilcus fleshy, nearly plane, somewhat umbilieate, rough with tessellated seales, floceose, zoneless, umber ; stem short, even ; spines deeurrent, pale-einere-ous.-Grev. t. 71.

On the ground, in pine-woods. Not common. Of the two forms, the one with thiek persistent seales alone has been at present found in Great Britain.
2. H. repandum, L. ; pileus fleshy, eompaet, rather waved, nearly smooth, pallid, as well as the irregular stem; spines unequal, of the same colour. (Plate 17, fig. 2.)-Huss. i. t. 16.

On the ground, in woods. Common. Esculent. H. rufescens is a variety with a redder colour.-Bolt. t. 89.
3. H. compactum, $F r$; ; pileus eorky, eompaet, waved and tuberculate, zoneless, olivaceous, einercous, or brown, eommonly involved in white down, variegated with blue within; stem very short, irregular, tawny-brown; spines brownish, pale at the tips.-Batsch, f. 221.

On the ground, on heaths, and in fir-woods. Rare. Bungay, Woodward. Aviemore, Klotzsch.
4. H. zonatum, Batsch ; ferruginous; pileus eoriaeeous, thin, expanded, somewhat funnel-shaped, zoned, at length smooth, radiato-rugose; margin pale, sterile; stem slender, nearly equal, floceose, tuberous at the base; spines slender, pallid, then of the same eolour as the pileus.-Batsch, f. 224 .

In woods. Rare. Cork, Mr. Denis Murray.
5. H. graveolens, Delastre ; pileus eoriaceous, thin, soft, zoneless, wrinkled, dark brown, eincreous when dry, brown within ; margin whitish ; stem slender ; spines short, grey.

In woods. Rare. Wales, Mr. Ralfs. Woreestershire. Has a strong and persistent smell of melilot.

** Stem lateral.

6. H. aurisealpium, L.; pileus dimidiate, kidney-shaped, eoriaeeous, hairy, bright brown, inelining to blaek; stem slender, rooting, hairy, of the same eolour; spines tough, bright brown.-Grev. t. 196.

On fir-concs. Commou. Extremely pretty.
*** Branched or tuberculiform, immarginate.
7. H. coralloides, Scop.; very much branched, white, at length ycllowish, broken up into intricatc attenuated branches; spines unilateral, awl-sliaped, entire.-Sow. t. 252.

On dccayed fir, beech, ash, etc. Rarc. Young plant resembling a cauliflower. Esculent.
8. H. Erinaceus, Bull.; flesh tough, clastic, pendulous, tuberculate, immarginate, white, acquiring a ycllow tinge above, torn into fibres; spines very long, straight, cqual, pen-dulous.-Bull. t. 34 .

On trunks of oak, beech, etc. Rare.
9. H. Caput-Medusæ, Bull.; flcshy, tubcrculiform, somcwhat stipitatc, white, then cincreous; upper spines distorted, lower fertile, long, straight.-Bull. t. 412.

On trunks of trees. Rare. Oxfordshire, C. P. Berkeley.

**** Stemless, dimidiate.

10. H. gelatinosum, Scop.; pileus gelatinous, tremulous, dimidiate, substipitate, glaucous, turning brown, papillatc; spines soft, pyramidal, glaucous.-Kromb. t. 50. f. 18, 22.

On trunks of firs. Vcry rare. Wcybridge, Mr. F. Currey.
11. H. ochraceum, P.; pileus cffuso-reflcxed, thin, coriaccous, zoned, ochraccous; spines very small, pinkish-ochre.Sow. t. 15.

On fallen sticks, ctc. Common. Easily removed from the matrix. Often resupinatc.

****** Resupinate.

12. H. squalinum, F_{r}; ; subiculum firm, coriaccous, adnatc, wood-coloured; spincs long, crowded, stout, compressed, entire, at length brownish.-Bolt. t. 74.

On trunks of trecs, especially becch. Admitted on the authority of the figures of Ray and Bolton.
13. H. membranaceum, Bull.; subiculum cffuscd, waxy, membranaccous, agglutinate, smooth, tawny-fcrruginous; spines awl-shaped, crowded, cqual, acute, of the samc colour. -Sow. t. 327.

On fallen sticks. Not uncommon. Spincs often collected in bundles.
14. H. Weinmanni, Fr.; subiculum cffused, waxy, membranaccous, agglutinate, smooth, greyish fawn-colour ; spincs minute, sharp, rather distant, cqual.-Pers. Myc. Eur. t. 22. f. 2.

On fallen branches. Bristol, Dr. Stephens.
15. H. fuscum, P. ; cffiused, rufous-brown ; circumfcrenee palcr, coarscly byssoid; spincs long, quite cutirc, closc, very acute, shining, as if varnished.-Pers. Myc. Eur. ii. t. 17. f. 3 .

On dead wood. Very rare. Wrabness, Essex, Rev. R. T. Lowe. Differs from H. fusco-atrum, Fr., in its long spines.
16. H. ferruginosum, $F r$.; subiculum cffused, tomentose, tawny-fcrruginous, as well as the crowded, conico-subulate, acutc spines.-Nees, Syst. f. 248.

On decaying wood. Not uncommon. Scparable from the matrix, almost mucedinous when not fully developed.
17. H. variecolor, P. ; subiculum effused, adnatc, furfu-raceo-crustaeeous; spincs crowded, short, conical, uncqual, minute, brownish.

On dead stumps. Rarc. Clifton, Nottinghamshire. Comparcd with an authentie specimon from Fries.
18. H. alutaceum, $F r$. ; subiculum longitudinally effiused, crustaecous, adnate, smooth, pale-ochre ; circumfcrence naked; spincs minute, crowded, equal, acute.

On dead wood. Rare. Colleyweston, Northamptonshire. My plant is not on fir-wood, like that of Fries.
19. H. spathulatum, $F r$.; subieulum effused, membranaceous, seceding, dirty-white, verging on yellow; eireumference fimbriate; spines spathulate, oblique, orange.

On deeaying wood. Very rare. Apethorpe, Northamptonshire. Spines, however, searcely orange, yet agreeing with authentie speeimens from Sehweinitz. Separable.
20. H. udum, $F r$.; subieulum effused, thin, subgelatinous, agglutinate, smooth, flesh-coloured, then watery-yellow; spines erowded, unequal, forked and fimbriate, of the same colour. (Plate 17, fig. 3.)

On fallen branches. Not uneommon. So nearly allied to H. membranaceum, that it is difficult to draw the line between them.
21. H. niveum, P. ; white; subieulum effused, thin, membranaceous, adnate; eireumference byssoid; spines short, erowded, equal, smooth.-Pers. Disp. t. 4. f. 6, 7.

On dead wood, leaves, etc. Rare. Bristol, C. E. B.
22. H. farinaceum, P.; white; subieulum effused, indcterminate, erustaceous, mealy ; eireumference slightly floceulose ; spines slender, rather distant, very aeute, quite entire.

On deeayed wood. Not uneommon. Varies a little in tint.
23. H. plumosum, Duby ; downy, snow-white ; subieulum very delicate; spines divided, feathered at the apex.-Bot. Gall. ii. p. 778.

On dead wood. Rare. Lambley, Nottinghamshire.
27. SISTOTREMA, P.

Hymenium spread over gill-like tecth, irregularly distributed, distinet from the pileus, and easily separable.

1. S. confluens, P.; simple, eonfluent, white ; pileus fleshy, irregular, horizontal, villous; stem somewhat execntrie ; teeth flexuous. -Grev. t. 248.

On the ground. Not common. At length yellowish, or tinged with brown. Teeth entirc, or jagged.
28. IRPEX, $F r$.

Teeth formed at an carly stage of the growth of the subiculum, concrete with it, and disposed in rows or like network, and connected together.

1. I. pendulus, F_{r}.; pilci membranaccous, plicatc, clothed with adpressed, pilose scalcs, ycllow, extended behind, pendulous; margin and large, seriate, incised tceth white.-Alb. and Schw. t. 6. f.7.

On pinc-wood. Rare. Seotland, Klotzsch. There is a strong analogy between this curious plant and Lentinus cochleatus. No onc now knows what Hydnum crispum, Schæff., is. It probably bclongs to this genus, and is said to have been found by Sibthorp and others.
2. I. Johnstoni, n.s.; pure whitc, coriaceo-membranaccous, scparable from the matrix ; circumfcrence naked; teeth eompressed, unequal, disposcd in rows.

On dead branches. Berwick, Dr. Johnston. This was referred to I. lacteus in the 'English Flora,' but that is a far thicker and very different species. The separable subiculum, and pure, unchangcable white, distinguish it from I. candidus, Wcinm.
3. I. obliquus, Fr. ; cffuscd, crustaceous, adnate, white, bceoming pallid; circumfercnce byssoid; tecth springing from a porous base, eompressed, uncqual, ineised, oblique.-Bolt. t. 167. f. 1.

On fallen branches. Not common. Berwick, Dr. Johnston. Linlithgowshirc, Dr. Bauchop.

29. RADULUM, F r.

Tubercles rude, irregular, commonly clongated and cylindrical, obtuse, waxy.

1. R. orbiculare, Fr.; in the autumn effuscd, orbicular, confluent, white, then yellowish; circumference byssoid; tubercles elongated, irregular, roundish, seattered or fasciculate ; in the spring waxy, smooth, flesh-coloured ; tubcreles shorter and broader.-Grev. t. 278.

On dead branches of birch. Not uncommon in some districts.
2. R. quercinum, Fr .; roundish, then widely confluent, innate, crustaceous, becoming smooth, white, then pallid; tubercles roundish, clongated, stout, obtuse, scattered or fasciculate, irregular, floccoso-villous at the tips.-Raii Syn.t. 1 . f. 4.

On branches of oak. Rare. Chester, A. B. Hill. East Bergholt, etc. Hydnum Barba-Jovis, Sow., belongs to this species.
30. PHLEBIA, Fr.

Hymenium soft and waxy (subgelatinous), spread over persistent crest-like wrinkles or veins, whose edge is cntire.

1. P. merismoides, Fr.; effused, flcsh-coloured, then livid, white and villous beneath; circumfcrence orangc, strigose; wrinkles simple, straight, crowded.-Grev. t. 280; Huss. ii. t. 44 .

On old stumps and decayed branches, often running over mosses. Rare. Thin, almost tremclloid when fresh.
2. P. radiata, Fr.; suborbicular, equal, smooth on cither
side, bright red, flesh-coloured; eireumferenee radiato-dentate ; folds straight, radiating in rows.-Sow. t. 291!

On bark. Very rare. Appin, Capt. Carmichael. Twyeross, Rev. A. Bloxam. Bright in eolour, almost orange. Thieker than the last.
3. P. eontorta, $F r$.; effused, rather firm, rufous, then brown, smooth on either side ; eireumferenee indeterminate ; folds eolleeted in little patehes or ramulose, somewhat flexnous, disposed irregularly.-Pers. Myc. Eur. t. 18. f. 5.

On deeayed wood, ete. Rare. Linlithgowshire, Dr. Bauchop. This is the only species of which I have not authentie speeimens.
4. P. vaga, $F r$.; effused, adnate; eireumference byssoid, fibrillose, dirty-yellow; hymenium yellowish-grey, formed of ereeping, intrieate veins, whieh at length eoalesee.

On deeayed wood. Common. Araehnoid at first, then traversed with intrieate, fruetifying veins rather than wrinkles, which multiply rapidly, and form an intrieate mass.

31. GRANDINIA, F r.

Hymenium waxy, granulated ; granules obtuse, entire, equal, erowded, smooth, persistent.

1. G. granulosa, Fr.; waxy, widely effused, agglutinate, tan-eoloured ; eireumference determinate, smooth ; hymenium equal ; granules hemispherieal, eqnal, erowded.

On fallen branehes. Common.
32. ODONTIA, Fr.

Subieulum formed of interwoven fibres, elothed with papillose or spine-shaped warts, whieh are erested at the apex.

1. O. fimbriata, $F r$.; effused, membranaceous, separating
from the matrix, traversed by rhizomorphoid threads; circumference fibrilloso-fimbriatc ; warts minute, granular ; apex multifid, reddish.

On fallen branches. Not uncommon. Frequently tinged with lilac. Very pretty.

$$
\text { 33. KNEIFFIA, } F \text {. }
$$

Soft, loosely fleshy, floceulose and collapsing when dry, hymenium rough with rigid, scattered, and fasciculate bristles.

1. K. setigera, $F r$.

On fallen branches. Not common. Wraxall, Somersetshire, C. E. B. White, somewhat rescmbling Grandinia granulosa in gencral appearance.

> Order 4. AURICULARINI.

Hymenium confluent with the hymenophorum, at first even or rarely veined, and commonly remaining even.*

34. CRATERELLUS, Fr .

Fleshy. Hymenium unchangcable, carnoso-membranaceous, distinet, smooth, even, or at length rugosc. Putrescent when old.

1. C. luteseens, Fr.; pilcus submembranaccous, tubæform, soon pervious, brown, floceulose ; stem hollow, ycllow ; hymc-

[^32]nium remotely eostate, even, then rough with interwoven veins.-Bolt. t. 105. f. 2.

In woods. Very rare. Edinburgh, Dr. Greville.
2. C. cornucopioides, Fr.; pileus submembranaeeous, trumpet-shaped, pervious, minutely squamulose, dingy-blaek; stem hollow, black, even, then obseurely wrinkled, einereous. (Plate 19, fig. 6.)—Huss. ii. t. 37.

In woods, on the ground. Loeal.
3. C. sinuosus, Fr.; pileus slightly fleshy, funnel-shaped, undulated, floceuloso-villous, brownish-grey; stem stuffed, pallid-einereous, as well as the hymenium, whieh is at length implexo-rugose.-Vaill. Par. t. 11. f. 11-13.

In woods. Seotland, Mrs. Wynne.
4. C. crispus, Fr_{r}.; pileus erisped, dingy, somewhat tawny; stem stuffed below; lymenium nearly even.-Sow. t. 75 ; Huss. ii. t. 18.

In woods. Not uneommon. Hymenium sometimes white, sometimes dingy.

35. THELEPHORA, Fr:

Pilens destitute of eutiele, eonsisting of interwoven fibres. Hymenium costato-striate or papillose, of a tough, fleshy eonsistence, at length rigid, and finally eollapsing and floeeulent.

* Not resupinate.

1. T. Sowerbeii, Berk.; eoriaeeous, somewhat funnel-shaped, reddish-brown, zoned; margin subplieate, dirty flesh-eoloured beneath, smooth; substanee of the same colour as the pileus. -Sow. t. 155.

On the ground, in woods. Rare. Cotterstoek, Northamptonshire. In Sowerby's original speeimens there is not the least traee of hairs on the hymenium : they eannot, therefore,
be the same with the plant of Fries and Pcrsoon. The same species occurs in Australia.
2. T. tuberosa, Grev.; subcoriaceous, smooth, pallid, becoming rufous; pileus cut down to the bulbous stem into compressed branches, disposed so as to assume the form of funnels; hymenium infcrior, smooth.-Grev. t. 178.

On the ground. Extremely rare. Edinburgh, Dr. Greville.
3. T. anthocephala, Fr.; soft, but coriaceous, subfcrruginous; pileus cut down, as far as the simple, equal, villous stem, into subcrect laciniæ, which are dilatcd and fimbriatc above; hymenium infcrior, even. (Plate 17, fig. 4.)-Sow. t. 156.

On the ground, in woods. Not uncommon. Scentless. Very variable as to the form of the bleached laciniæ. Somctimes regular, as in Bulliard's fig. t. 452. f. 1, sometimes irrcgular, as in the figures quoted above.
4. T. caryophyllæa, Fr.; subcoriaccous, brown, purple; pileus depressed, fibrous, torn; margin sometimes inciscd, somctimes cut into linear divisions; lymenium ncarly even, smooth.

On the ground, in woods. Rare. Bungay, Mr. Stock, abundantly. Sometimes regularly infundibuliform.
5. T. palmata, Fr.; soft, but coriaccous, ercct, very much branched, pubescent, brown-purple; base simple, stem-shaped; branches flat, even, dilated above, palmate, somewhat fastigiate; tips fimbriatc, whitish.-Grev. t. 46 .

On the ground. Not common. Vcry fetid.
6. T. terrestris, Fr.; cæspitosc, soft, brown, at length blackisl! pilcoli imbricatc, flattencel, fibroso-strigose, zoncless, elongated into a somewhat lateral stem ; liymenium inferior, radiato-rugosc.-Nees, f. 251.

On the ground. Not common. T. laciniata is often confounded with this.
7. T. cristata, Fr.; inerusting, rather tough, pallid, tufted, passing into branches or asconding tufted lacinix; subulate and fimbriate at the apex; hymenium papillose on cven patehes or the sides of the branches.-Sow. t. 158.

On mosses, etc. Not uncommon.
8. T. fastidiosa, Fr .; very fetid, effused, soft, slapcless, white, passing into plate-like branches ; lymonium inferior, at length rufous, papillose.

On the ground. Not common. Bristol, Dr. Stephens, cte. Smell disgusting. Looks at first sight like some Mycelium.
9. T. mollissima, P.; soft, floshy, incrusting ; pilei effusoreflexed, laciniate, subtomentose, dirty-white; lymenium inferior, cven, brown-purple. (Plate 17, fig. 5.)

On the ground, in woods. Not uncommon. Extremcly variable. Sometimes quite effused, sometimes assuming the form of T. palmata. The form in the figured specimen arises partly from incrusting the old stumps of large grasses.
10. T. laciniata, P.; soft, coriaccous, incrusting, ferruginousbrown; pilci somewhat imbricated, effuso-reflexed, fibrososquamose; margin fibrous, fimbriated, at first dirty-white; hymenium inferior, papillose, floeculosc.-Sow. t. 213.

On branches, heatly ground, ctc. Common. Sometimes quite resupinate, sometimes almost dimidiatc, but cffused behind.
11. T. bionnis, Fr .; coriaccous, soft, broadly incrusting, cinercous-brown ; pilei at length reflexed, but narrow, tomentosc ; circumference fimbriated; hymenium subrcsupinate, smooth, subsctulose, plicate at the basc.-Bull. t. 436.

On the ground, incrusting stones, stumps, ete. Very rare. Kew Gardens. Bowood, Wiltshirc, C. E. B.
** Resupinate.
12. T. cæsia, P.; cffused, determinate, soft, glaucous-ashcoloured; hymenium nearly even.

On the ground, in woods. Not uncommon. Bristol. Northamptonshirc. The hymenium, with its quatcrnate spores, is a pretty, opaque object under the microscope.
13. T. byssoides, P.; irregularly effused, at first byssoid, ochraceous-white, then compact and fleshy, pulverulent, fer-ruginous-yellow ; eircumfcrence byssoid, ncarly whitc.

On the ground, especially amongst fir-leaves, making patches a foot broad. Not uncommon. The ferruginous spores at once scparate this from every form of T. mollissima.
14. T. puteana, Schum.; roundish and effused, fleshy, rather thick, brittle, yellowish, then tawny-olive, at last brownisholive, dusted with the spores; cireumference mucedinous, white; hymenium somewhat undulated.

On stumps, wood in cellars, ctc. Not uncommon. Somctimes dripping with moisture. Occasionally large, globular, solid or hollow lumps, are formed upon the hymenium, giving the plant a very singular appearance.
15. T. laxa, Fr.; membranaceous, soft, looscly adlicrent, araehnoid beneath, white as wcll as the byssoid circumference ; hymenium papillose, pallid, then fcrruginous-olive, dusted with the ferruginous spores.

On lichens, moss, etc. Rare. King's Cliffc. Oswestry, Rev. T. Salwey.
16. T. arida, Fr.; membranaceous, soft, arachnoid bencath, and white as well as the byssoid eircumference; hymenium papillose, pallid, then ferruginous-olive.

On decayed pine-wood, in eellars and woods. Common. Not so thick as T. putcana.
17. T. olivacea, Fr. ; membranaceous, cffused, adnate ; circumfercnec white, fimbriated; hymenium dull-olive, sctulosotomentose.

On pinc-wood. Northamptonshire, cte. Probably common. I have authentic specimens of this species from Frics.
18. T. anthochroa, P. ; effused, subadnate ; eireumference byssoid, paler; lymenium even, brownish-rose, at length pallid, floceose and velvety.

Var. versicolor.
On syeamore twigs. Rare. Wothorpe. My plant, when dry, resembles authentic speeimens from Fries, but when fresh is variously tinted with fugitive sliades of lilae and brown.

36. STEREUM, $F r$.

Hymenirm eoriaeeous, rather thiek, eonerete with the intermediate stratum of the pileus, which lias a eutiele, always even and veinless, unchangeable, not beset with bristles.

1. S. purpureum, Fr .; soft, but eoriaeeous ; pileus effusoreflexed, obsoletely zoned, villoso-tomentose, pallid or dirtywhite; liymenium naked, even, smooth, purplish or lilac.Sow. t. 388.f. 1 ; Huss. i. t. 20 .

On trunks of fallen trees, espeeially poplars. Extremely eommon, and often very beautiful. Auricularia elegans, Sow. t. 412. f. 1, is merely a state of this.
2. S. hirsutum, $F r$.; coriaceous ; pileus effused and reflexed, strigoso-hirsute, somewhat zoned, turning pallid; margin rather obtuse, yellow ; hymenium even, smooth, naked, juiecless, bright tawny-yellow, unehanged when bruised. (Plate 17, fig. 7.)-Huss. i. $t .58$.

On stumps of trees, etc. Everywliere. Found also in subtropical countries.
3. S. spadiceum, $F r$. ; eoriaceous ; pilei effuso-reflexed, villous, subferruginous; margin rather obtuse, white, even beneath, smooth, brownish, when fresh bleeding if bruised.Sow. t. 28.

On stieks, espeeially oak. Common. Ofter very pretty; variable in eolour, but easily distinguished from every speeies
exeept S. rugosum and the following, which is confined to Conifers, by its turning red when seratehed or bruised.
4. S. sanguinolentum, $F r$. ; thin, eoriaceous; pileus effused and reflexed, silky, somewhat striate, pallid; margin aeute, white; hymenium even, smooth, einercous-brown, bleeding when wounded.-Grev. t. 225.

On wood of Conifers. Very common. Colour far less bright than that of the last. A. hepatica, Sow. t. 388. f. 2, is merely a washed state of one of the foregoing species, probably S. purpureum.
5. S. rugosum, $F 3$. ; eorky, rigid ; pileus effused and shortly reflexed, obtusely margined, at length smooth, bright brown ; hymenium dull, pruinose, bloodstained when wounded.

On stumps, especially hazel. Extremely common. Sometimes surviving one or more seasons, and then thick and zoned within. T. Laurocerasi, Berk. in Eng. Fl., is, I believe, a thin, resupinate form of this speeies. A. cinerea, Sow. t. 388, f. 3, is, I think, merely Corticium quercinum.
6. S. aeerinum, F_{r}.; erustaceo-adnate, even, smooth, white. On trunks of living maples. Very eommon.

37. HYMENOCH 尼TE, Lév.

Coriaccous, dry. Hymenium even, beset with short, stiff, eoloured bristles.

1. H. rubiginosa, Lév.; eoriaceous, rigid; pileus effusoreflexed, some what faseiate, velvety, rust-coloured, then smooth, bright brown; intermediate stratum tawny-ferruginous; hymenium ferruginous.-Sow. t. 26.

On gate-posts, ete. Very eommon.
2. H. tabaeina, Lév.; coriaccons, then flaeeid ; pileus effused, reflexed, silky, at length smooth, subferruginous; margin and intermediate filamentous stratum golden-yellow; hymenium paler.

On fallen branches. Rare. Graecdieu, Leicestershirc, ete. Sow. t. 25, belongs to Stereum spadiceum.
3. H. corrugata, B. ; effused, elosely adnate, indetcrminate, einnamon, eraeked when dry.-Grev. $t .234$.

On stieks, in woods. Very common. Varying in colour, ferruginous, copper-coloured, etc. It eertainly onght not to be placed in a distinet genus from the two preceding, of one of which it is possibly only a resupinate condition.
38. AURICULARIA, Fr .

Hymenium irregularly and distantly folded, gelatinous when wet, different in substanec from the pileus.

1. A. mesenteriea, Bull.; pilei resupinate, thin, reflexed, entire, villous, zoned, and fasciate, brownish-einereous; hymenium costato-plicate, brownish-violet.-Sow. t. 290; Huss. ii. t. 6.

On stems of trees, ete. Not uncommon. In dry weather very thin, but reviving with wet.
2. A. lobata, Somm. ; pileus effuso-reflexed, variegated with strigoso-tomentose, velvety and smooth zones, tawny, inelining to dirty-white ; hymenium livid-tawny ; folds distant, forming a loose network. (Plate 18, fig. 1.)

On bark of trees. Not common. Staunton, Nottinghamshire. Very nearly allied to the last.

39. CORTICIUM, $F r$.

Hymenium soft and fleshy, swollen when moist, eollapsing and becoming even when dry, often rimose.

> * Circumference byssoid, fibrillose, etc.

1. C. giganteum, $F r$.; widely effused, when moist swelling, waxy, hyaline, white, when dry thin, but eartilaginous, free, milk-white ; cireumference strigoso-radiate ; hymenium even.

On pine-stems, and from thence running over twigs, ctc. Common. Sow. t. 349, is Merulius corium. Bolt. t. 166, f. d, is probably Stereum rugosum.
2. C. lacteum, Fr.; cffuscd, membranaceous, milk-white beneath, with the circumference looscly fibrillose ; hymenium, when perfect, waxy, darker, rimoso-partite when dry.

On trunks of trces, ete. Not uncommon. The mycelium sometimes forms white strings, which run about like those of Clavaria stricta, Agaricus platyphyllus, etc.
3. C. arachnoideum, B.; effused, delieately byssoid, as is the circumference ; hymenium whitc, very thin, patcly.

In woods. Not uncommon, running over lichens, ctc. The mycelium is as delicate as a spider's web.
4. C. lævө, Fr.; effused, membranaceous, scparating, villosofibrillose bencath ; circumfcrence byssoid, not radiating ; lyymenium even, smooth, pinkish, and livid.

On dccaying wood, sticks, ctc. This is the commoncst of all the speeics, and assumes a varicty of forms. Sometimes it remains closely attached, sometimes the margin is broadly reflexed. The hymenium also varics in colour, being sometimes pure whitc. The circumference is occasionally almost naked.
5. C. roseum, P.; effused, adnatc, rose-coloured ; circumfcrence fringed, whitish ; hymenium pruinose, bocoming pale, at length much cracked and rugose, hardened.

On poplar. Not common.
6. C. velutinum, \not Kr. ; effuscd, adnate, white, slightly tinged with pink ; circumference ornamented with straight, strigose, diverging fibres, of the same colour; hymenium soft and fleshy, thiek, even, velvety, with dense liyaline bristles.

On logs. Not uneommon. Very beautiful and distinet.
7. C. sanguineum, Fr.; bright scarlet, broadly effused, of
a soft cottony substance, at first thin, membranaceous, then thicker ; eireumference fibrillosc.

On dead lareh, ctc. Rare. Abundant in Sherwood Forest. This is C. miniatum, Berk., whose differences vanish on the discovery of abundant speeimens. Sow. t. 291 is Phlebia radiata.
8. C. sulfureum, Fr.; effused, fibrilloso-byssoid, bright sulphur-eoloured; hymenium when perfeet thiek, waxy, somewhat tawny, rimose when dry.

On fallen stieks, ete. Not uneommon, but seldom perfect.
9. C. cæruleum, W_{r}.; roundish, then effused, adnate, at first bright blue ; eircumference byssoid, of the same colour, whitish; hymenium soft, waxy, papillose, at length smooth. -Huss. i. t. 20.

On rails, dead wood, cte. Extremely comnon. Said to be luminous in the dark.
10. C. atro-virens, Fr. ; irrcgularly effused, blaek-green, of the same eolour bencath, downy, as well as the cireumference.

On stieks, in woods. Not common. Like Fries, I have never found a perfect hymenium.
11. C. lactescens, B. ; agglutinate, soft, waxy, undulated, flesh-eoloured, milky; margin shortly byssoid, at length cracked; interstiees silky.

On decayed wood of willows, ctc. Not uncommon. Smell like that of Lactarius quietus. Milk white, watery. Hymenium flesh-coloured or pale salmon-coloured.
** Circumference not distinctly byssoid, ete.; or if so, only at the very first.
12. C. calceum, Fr .; effused, agglutinate, waxy, quite smooth, white ; eireumference like the rest of the plant ; hymenium even, smootl, cracked when dry.

On pine-wood. Common. Varying in colour from white and tan-eoloured to dingy. One or two Corticia not easily defined occur on oak-branches, ctc., rescmbling this and C. Sambuci, They require further study before proposing them as spccics. Thelephora cretacea, P., and T. dryina, P., bclong to thesc indeterminate speeies, and arc both found in this country ; the former on deal in hothouses, the latter on oak-branches.
13. C. lividum, P.; effused, agglutinate, waxy, soft, smooth, changing eolour; circumfercnce like the rest of the plant; hymenium naked, even, somewhat viscid, cracked when dry.

On wood. Not common. Appin, Capt. Carmichael.
14. C. ochraceum, Fr.; cffused, agglutinatc, soft, waxy, at length smooth; circumference white, somcwhat radiating, cvanescent; hymenium pallid, then ochraccous, pruinose, at length naked, tubcrculated or papillose.

On pine-wood, ctc. Not common.
 glutinate, indeterminate, then fixed in the centre, with the border free and involutc, rigid, smooth and black below ; hymenium tinged with pink.-Grev, t. 182.

On oak-branches. Extremcly common.
16. C. einereum, Fr.; waxy, at length rigid, confluent, agglutinate, lurid; hymenium cincrcous from a very delieatc bloom.

On dcad wood, sticks, etc. Extremely common, and very variable. Frequently very thick on ash-twigs.
17. C. inearnatum, Fr . ; waxy, at length rigid, coufluent, agglutinate ; circumfcrence radiating; hymenium bright red or orange, sprinkled with a dclieate flcsh-coloured bloom.

On timber, rails, ctc. Very common. Somctimes without any radiating circumfcrence. Varying much in the depth of the tint.
18. C. nudum, Fr.; waxy, at length rigid, agglutinate, flesh-coloured, then pallid; circumference detcrminate, smooth; hymenium sprinkled with fugacious, dirty-white meal.

On twigs, in woods. Not uncommon.
19. C. confluens, Fr.; waxy, membranaeeous, agglutinate; cireumference radiating; hymenium nakcd, hyaline, then brightly coloured, somewhat shining.

On twigs of ash, etc. Not uncommon. Wothorpc, Northamptonshire, with the last. Often slight papillose.
20. C. polygonium, P.; determinate, adnate, grumosoeartilaginous, hard, flcsh-colourcd ; circumfcrence of the same eolour ; hymenium continuous, red, coated with meal.

On poplar-branelies, growing in little, round, detaehed patches, from the ostiola of Spharia. Not uncommon.
21. C. comedens, $F r$.; effused, exposed by the splitting of the cuticle of the matrix, thin, innate, flesh-coloured, at length pallid ; hymenium even, smooth.

On branches of various trces. Extremcly common. Hymeuium variable in colour, sometimes whitc.
22. C. Sambuci, P.; effused, subinnate, variously incrusting, whitc, continuous when growing, cracked or eollapsing when dry.-Grev. t. 242.

On elder-stumps. Extremely common. Very difficult to scparate from C. calceum by a strict definition.
23. C. Aurora, B. and Br.; very thin, effused, agglutinate, rose-eoloured, turning pallid; circumference indeterminate.

Ou dead leaves of Carices. Batheaston. Resembles Athelia Typhee and A. epiphylla, P. The lattcr is, I believe, only a state of C. arachnoideum, and has been found by Mr. Lcighton at Shrewsbury.

40. CYPHELLA, Fr.

Submembranaceous, cup-shaped, elongated behind and frequently pendulous. Hymenium distinetly inferior, eompletely eonfluent with the pileus.

1. C. griseo-pallida, Fr.; submembranaeeous, globose, then eampanulate, sessile, pallid-grey, floceose externally; hymenium even, smootll.

On dead Carex paniculata. Spye Park, Wiltshire, C. E. B.
2. C. muscigena, Fr.; membranaccous, soft, nearly sessile, dimidiate, flattened, white, externally minutely silky; hymcnium rugulosc.-Myc. Eur. t. 7. f. 6.

On mosses. Not common. Hanham, near Bristol, C. E. B. Looks at first sight like a little Cantharellus.
3. C. galeata, $F r$. ; membranaceous, soft, nearly sessile, cup-shaped, then dimidiate, helmet-shaped, even, dirty-white ; margin quite entire ; hymenium at length somewhat rufous, rugulose.

On mosses. Not uncommon. Differs from the last in its dingy hue and bullate pilcus.
4. C. ochroleuca, B. and Br.; membranaceous, eup-shaped, villous and ochroleucous above ; margin at length split; hymenium even, pale ochre, brighter than the pileus.

On decayed bramblc-twigs. Batheaston, C. E. B.
5. C. muscicola, Fr .; membranaceous, nearly sessilc, persistently cup-shaped, cinereous, dirty-white, turning pale, fi-brilloso-striate externally; margin slightly downy, uneven, torn; hymenium cven.

On mosses. Apethorpe, Northamptonshire, ete.
6. C. lacera, Fr.; membranaceous, eup-shaped, pendulous, then multifid; vertex stretched out, stem-shaped; striate above
with little black hairs ; hymeninm slightly wrinkled, dirty-white.-Alb. and Schw. t. 1. f. 5.

On dead stalks, twigs, ete. Not common. Apethorpe, Northamptonshire.
7. C. capula, Fr. ; membranaceous, obliqnely campanulate, stretehed out into a eurved stem, smooth, dirty-white ; margin sinuated, irregular ; hymenium cven.-Holmsk. ii. t. 22.

On dead stems of herbaecous plants. Not uncommon. Looks like a Peziza. Sometimes ycllow.
8. C. Goldbachii, Fr. ; membranaccous, cup-shaped, ur-ccolato-concave, sessilc, extcrnally white, villous; lymeninm even, pallid.

On dead leaves of Aira ccespitosa. Spye Park, Wiltshirc, C. E. B.
9. C. cuticulosa, Fr.; membranaecous, white, diaphanous, at first oblong, then eup-shaped, clongated into a stem, smooth extcrmally.-Dicks. iii. t. 9. f. 11.

On dried grass-stems. Not found since the time of Dicksoll.

Order 5. CLAT'ARIEI.

Hymenium seareely distinet from the lymenophorum, vertical, amphigenous, reaehing to the very apex, creu, or at length wrinkled. Ncver inerusting or eoriaccous.

41. CLAVARIA, L.

Fleshy, branched or simple without any stem of a distinet substanec ; hymenium dry.

> 1. Branched.
> * White-spored.

1. C. Botrytis, P.; brittle; trunk thick, fleshy, unequal,
very mueh branehed ; branehes swollen, uncqual, rather wrinkled; tips red.-Kromb. t. 53. f. 1, 4.

In woods. Very rare. Inverary, Lady Orde. Bowood, C. E. B.
2. C. amethystina, Bull.; brittle, very muel branehed, violet ; branehes round, cven, obtusc. (Plate 18, fig. 2: small variety.) -Bull. t. 496. f. 2.

In mossy places. Rare. Bristol, H. O. Stephens. Coed Coch. Most variable in size. Sometimes 3 inehes or more high, and very mueh branehed ; sometimes a few lines, and nearly simple.
3. C. fastigiata, D.C.; tough, eæspitose, yellow, slenderstemmed, very mueh branehed; branehes short, divarieate; branehlets fastigiate.-Holmsk. i. p. 90, with a figure.

In pastures. Extremely common.
4. C. muscoides, L.; rather tough, graceful, ycllow, slen-der-stemmed, twice or thriee forked ; ramuli lunate, aente.Holmsk. i. p. 87, with a figure.

In pastures. Not so common as the last.
5. C. eoralloides, L.; rather brittle, white, hollow within ; stem rather thick, repeatedly and irregularly branehed; branehlets unequal, dilated above, very numerous, erowded, aeute.Sow. t. 278.

In woods. Not common. Kent, Mrs. Hussey.
6. C. umbrina, B.; pale-umber, slightly branched; branehcs and branellets eylindrical, obtuse, forked. (Plate 18, fig. 4.)

On mossy lawns. Coed Coch. I find nothing at all agreeing with this. The habit is that of C. fustigiatu. It has not, however, the slightest tinge of yellow.
7. C. einerea, Bull.; brittle, stuffed, at length cinercous, very mueh branched; stalk slort, thick; branches and branchlets thiekened, irregular, somewhat wrinkled, obtusc.-Grev. t. 64.

In woods. Common in some districts.
8. C. cristata, Holmsk.; tough, cven, stuffed, white or dingy; branches dilated above, acutcly incised, crested.Grev. t. 190.

In woods. Not uncommon.
9. C. rugosa, Bull.; tough, simple or branched, thickened above, wrinkled, white or dingy; branches few, irregular, obtuse. (Platc 18, fig. 3.)-Grev. t. 328.

In woods. Common. The dingy form requires to be carcfully distinguished from C cinerea.
10. C. Kunzei, $F r$.; rather brittlc, very much branched from the slender tufted basc, white; branches clongated, crowded, repeatedly forked, somewhat fastigiatc, even, equal ; axils compressed.-Bull. t. 358. f. 1 C.

In woods. Very rarc. Sherwood Forest.

> ** Spores yellowish or coloured.
11. C. aurea, Schoeff.; trunk thick, clastic, pallid, divided into numcrous stout, straight, dichotomous, round, obtuse, rather toothed, yellow branches.-Sche.ff. t. 287.

In woods. Rarc. Bristol, Dr. Stephens.
12. C. abietina, Schum.; very much branchcd, ochraceous; truuk rather thiek, clothed with white down; branches straight, crowded when dry, longitudinally wrinkled; branchlets straight. —Grev. t. 11\%.

In fir-woods. Common. Sometimes turning green when bruised.
13. C. flaccida, $F r$.; slender, very much branched, flaccid, ochraccous ; trunk slender, smooth ; branchlets crowded, uncqual, converging, acute.

Amongst moss, in woods. Not common, King's Cliffc.
14. C. crocea, P.; minute, slender, saffron-ycllow; truuk
naked, pale ; branehes erowded, somewhat forked, as well as the similar branehlets.-Pers. Ic. et Descr. t. 11. f. 6.

On the ground. Very rare. Wraxall, Somersetshire, C. E. B.
15. C. grisea, P.; firm; trunk thiek, dirty-white ; branehes attemated, rather wrinkled, obtuse, dingy-einereous, as well as the unequal, obtuse branellets.-Kromb. t. 53. f. 9, 10.

In woods. Rare. Appin, Capt. Carmichael. Known by its brownish spores.
16. C. stricta, P.; very mueh branehed, pallid, brown when bruised ; trunk rather thiek; branehes and branehlets straight, even, adpressed, aeute. (Plate 18, fig. 5.) -Sow. t. 157.

In gardens, springing from rotten woods. Rare. Kew, ete. Myeclium forming long ereeping strings.
17. C. crispula, Fr.; very mueh branehed, tan-eoloured, then oehraeeous; trunk slender, villous, sending out roots; branehes flexuous, multifid ; branehlets of the same colour, di-varieate.-Bull. t. 358. f. $1 a, b$.

At the base of trees. Rare. Woodnewton, in great quantities, in a hollow ash.

2. Simple.

* Clubs more or less connate at the base.

18. C. purpurea, Müll.; tufted, purple; elubs elongated, hollow, then compressed, simple, aeute.-Fl. Dan. t. 837.f. 2.

Amongst grass, in pastures. Tansor, Northamptonshire. Coed Coch. Of a dingy purple.
19. C. rosea, Fr.; subfaseiculate, brittle, rose-coloured ; elubs stuffed, at length yellowish at the apex.

In pastures. Rare. Leieestershire, Rev. C. Babington.
20. C. fusiformis, Sow.; eespitoso-connate, rather firm, yellow, soon hollow; elubs somewhat fusiform, simple and
toothed, even, attenuated into a base of the same colour.Sow. t. 234.

Common in woods.
21. C. ceranoides, P.; fasciculate, unequal, slightly divided above, ycllow; apcx brown.-P. Syn. p. 594; Sow. t. 235.

In woods. Not common. Bagley Wood, Oxfordshire, Rev. T. Hugo, Nov. 1841. Distinct, I think, from the last.
22. C. inæqualis, Mïll.; gregarious, subfasciculatc, brittle, stuffed, ycllow; clubs various, simple or forked, of the same colour below, continuous.-FI. Dan. 836. f. 1; Sow. t. 253, lower figures; Huss. i. t. 18.

In woods, amongst grass. Common. A very variable plant. Grev. t. 37 is smaller, scarcely fasciculate, and much brighter in colour. C. helvola, P., on the contrary, is of a dirty-yellow, with the tips cinnamon.
23. C. argillacea, Fr.; fasciculate, brittle, pallid claycolour ; clubs simple, variable ; stcm ycllow, slining.

In heatly ground. Not uncommon. There is a varicty with a white stem. The plant, morcover, is either dilated or cylindrical. The stem in this species is more distinct from the pilcus than is consistent with the gencric character.
24. C. tenuipes, B. and $B r$.; small, gregarious; club inflated, wrinkled, pallid clay-colour; stem slender, flexuous, somewhat distinct from the club.-Ann. of Nat. Hist. ser. 2. vol. ii. t. 9. f. 2.

On bare heathy ground. Sherrrood Forest. About half an inch high, rarely confluent with the stem.
25. C. vermiculata, Scop.; cespitosc, brittle, whitc; clubs stuffed, simple, cylindrical, subulatc.

On lawns, and in short pasturcs. Extrencly common. Looks like a little bundle of candles.
26. C. fragilis, Holmsk.; faseiculate or gregarious; very brittle; club hollow, obtuse, variable, attenuated and white below.-Holmsk. i. p. 7, with a figure ; Sow. t. 90, 232.

In meadows, gardens, etc. Not so common as the last. Sowerby's plant, t. 90, is inflated ; t. 232 is slender and more eylindrieal, while Bolt. t. 111 represents a subulate form. Oceasionally the plant is yellow, but always remarkable for its extreme brittleness.

** Clubs distinct at the base.

27. C. pistillaris, L. ; large, simple, fleshy, stuffed, everywhere smooth, obovato-elavate, obtuse, at length rufous.Huss. i. $t .62$.

In woods. Not common. Kent, Mrs. Hussey. King's Cliffe, ete. At first white or yellowish.
28. C. contorta, Fr.; simple, bursting through the bark, stuffed, between spongy and fleshy, somewhat twisted, wrinkled, obtuse, pruinose, watery-yellow or dirty-white.

On fallen branehes. Rare. Gracedieu, etc. The crumpent habit easily distinguishes this eurious speeies.
29. C. Ardenia, Sow. ; simple, very long, inerassated upwarts, hollow ; apex obtuse and exeavated, ferruginous, then bright brown, tomentose at the base, rootless.-Sow. t. 215.

On fallen branches. Very rare. Prineipally in the southern eounties.
30. C. juncea, Fr.; gregarious, slender, filiform, flaceid, nearly equal, fistulose, aeute, pallid, then reddish-brown, ereeping at the base and fibrillose.-Bull. t. 463. f. H.

Amongst leaves, in woods. Sometimes very abundant.
31. C. acuta, Sow.; quite simple, straight, white; elub distinet, acuminate, pruinose ; stem eylindrieal, equal.

On soil, in garden-pots. Not eommon. Sometimes rather obtuse.
32. C. uncialis, Grev.; quite simple, tough, straight, stuffed, obtuse, smooth, continuous below, attenuated.-Grev. t. 98.

On moist dead stems of Umbelliferce. Not uncommon.

42. CALOCERA, Fr .

Gelatinous, subeartilaginous when moist, horny when dry. Hymeuium viseid.

1. C. viscosa, Fr.; brauched, tough, rooting, even, linear, golden-yellow; branches straight, repeatedly dichotomous.Scheeff. t. 174.

On stumps, in fir-woods. Not uneommon. A beautiful species.
2. C. tuberosa, Fr. ; eæspitose, simple, tough, even, liucar, yellowish, tuberous aud rooting at the base.-Sow. t. 199.

On stumps. Not fouud since the time of Sowerby.
3. C. cornea, Fi. ; eæspitose, rooting, even, viscid, orange ; elubs short, subulate, connate at the base.

On stumps of trees, especially oak. Common.
4. C. glossoides, Fr. ; simple, solitary, subtremelloid, yellow ; elub inerassated, obtuse, compressed ; stem rouud.

On deeayed oak-stumps. Very rarc. Leigh Wood, Bristol.

43. TYPHULA, F.

Stem filiform, flaceid. Club eylindrieal, perfectly distiuet. Hymenium thin, waxy.

1. T. erythropus, Fr. ; simple ; club cylindrical, smooth, white ; stem nearly straight, dark-red, inelining to black.Grev. t. 43.

On dead stems of herbaceous plauts, ete. Very common. Always attached to a Sclerotium.
2. T. phacorrhiza, Fr.; simple ; club cylindrical, smootl, pallid; stem flexuous, smooth, brownish.-Sow. t. 233.

On dead herbaccous plants, leaves, ctc. Attached to Sclerotium complanatum and S. scutellatum.
3. T. incarnata, Fr.; simple ; club cylindrical, elongated, smooth, flesh-coloured, attenuated into the simple, subpilose, continuous stem.-Grev. t. 93.

On dead herbaceous plants, ctc. Not common.
4. T. muscicola, Tr.; simple, subfiliform, smooth, slightly incrassated upwards, white; stem confluent or obsolete.-Pers. Obs. ii. t. 3. f. 2.

On the larger mosses. Not common. Perhaps more properly a Pistillaria. Sometimes not a line high.
5. T. Grevillei, Fr.; simple, whitc ; club incrassatcd, obtuse ; stem capillary, pilose.-Grev. t. 49.

On dead leaves, etc. Not uncommon.
6. T. filiformis, Fr.; club incrassated, dirty-whitc ; stem decumbent, somewhat brauched, bright brown.-Sow. t. 387. f. 4.

Amongst dead leaves. I am not acquainted with this species.
7. T. gracilis, Berk. and Desm.; club simple or forked, pallid, acute; stem short, distinct.

On putrid leaves. Not common. Head rough with spores and little prominent bristles. Very near to Isaria.

44. PISTILLARIA, F.

Club-shaped, waxy, then horny. Structure cellular.

1. P. micans, Fr.; obovatc, obtuse, rose-coloured ; stem short, attenuated, whitish.-Hoffm. Germ. t. 7. f. 2.

On dead thistlcs. Rare. Cambridge, etc.
2. P. culmigena, Mont. und Fr.; ovato-clavatc, obtuse, hyalinc, pellucid; stem distinct, very short.-Mont. in Ann. des Sc. Nul. sér. 2. vol. v. t. 12. f. 2.

On stalks of grass. Not uneommon. Fotheringay, Decne, cte., Northamptonshirc.
3. P. quisquiliaris, $\operatorname{Fr} \cdot$; ; inerassatcd above, somewhat eompressed, dirty-white, soft when growing, attenuated at the base, substipitate.-Sow. t. 334. f. 1.

On fern-stems. Common. Often attashed to a Sclerotium.
4. P. puberula, Berk.; obovate, ventrieose, white; stem shor't, distinct, pellueid, tomentose.-Sow. t. 334. f. 2. P. ovata, Fr.

On dead Pteris aquilina. Rare. King's Cliffe. The stem in this is composed of fibres; therefore I fear that Fries's character will hardly stand.
5. P. pusilla, $F r$.; small, smooth, even, linear, white ; stem not distinet at the base.-Pers. Comm.t. 3. f. 6.

On Equisetum. Weymoutlı.

Order 6. Tiremeldint.

Whole plant gelatinous, with the exeeption oecasionally of the nueleus. Sporophores large, simple or divided. Spieules elongated into threads.

$$
\text { 45. TREMELLA, } F r \text {. }
$$

Gelatinous, tremulous, immarginate. Hymenium not papillate, surrounding the whole of the Fungus.

1. T. fimbriata, P.; exspitose, erect, corrugated, oliveblaek; lobes flaecid, inciscd, undulato-fimbriate.-Bull. t. 272.

On dead branehes. Very rare. Sowerby's herbarium.
2. T. frondosa, $F r$. ; eæspitose, very large, even, pallid, plieate at the base; lobes waved and sinuated.-Bull.t. 499 T.

At the basc of living trees. Very rare. On oak, Wothorpe, Northamptonshire. A very curious and distinct species. Colour a peculiar pale pinkish-yellow.
3. T. foliacea, P.; cespitose, flaccid, even, diaphanous, undulated, cinnamon, inclining to flesh-coloured, plicate at the base.-Bull. t. 406. f. A.

On old stumps. Not uncommon. Varying much in colour, sometimes deep red-brown (T. ferruginea, E. B. t. 1452), sometimes violet. All the three forms occur occasionally in this country.
4. T. lutescens, Fr.; cæspitose, tremulous, undulatogyrose, white, at length ycllow ; lobes crowded, entirc.-Bull. t. $406 \mathrm{C}, \mathrm{D}$.

On old stumps. Not uncommon.
5. T. mesenterica, Retz; ascending, rather tough, plicatoundulatc, smooth, bright orange.-Eng. Bot. t. 709; Huss. i. t. 27 .

On sticks in woods, hedges, etc. Extremcly common.
6. T. vesicaria, Bull.; firm, bladdery, much waved and wrinkled, erect, pallid, very viscid within.-Eng. Bot. t. 2451.

On the ground. Very rarc. I have seen no British specimens, but in some from the United States I find the structure of a Iremella. It is certainly no Alga, as stated by Fries.
7. T. moriformis, B.; conglobated, sinuated, mulberryblack, opaque, firm.-Eny. Bot. 2446.

On clm-branches. Rarc. Bathcaston, C. E. B. This bcautiful species is, I think, a truc Tremella, approaching, however, to Nematelia. The sporophores do not at all resemble those of Dacrymyces.
8. T. albida, Huds.; cffused, adpressed, even or gyrosoplicate, pruinosc, dirty-white, at length brownish.-Eng. Bot. t. 2117.

On dead branches. Common.
9. T. intumescens, $S m$.; subcrespitose, rounded or conglomerate, soft, brown, when dry ncarly black, obsolctcly dotted, lobed, somewhat tortuous.-Eng. Bot. t. 1870.

On trunks of fallen trces. Not common. Apcthorpe, Northamptonshirc. Resembles very closely some Exidia.
10. T. indecorata, Somm.; sessile, rounded, moist, convex, plicatc, opaque, brown, ncarly black, dingy.

On willows, ctc. Mossburnford, A. Jerdon.
11. T. sarcoides, Sm.; cæspitosc, soft, viscid, flesh-coloured, inclining to purple, at first club-shaped, then compressed, lobed and plicatc. (Plate 2, fig. 7.)-Eng. Bot. t. 2450 .

On old stumps. Very common.
12. T. clavata, P.; solitary, simple, incrassated, flesh-coloured, blackish at the basc.-Pers. Ic. Pict.t. 10. f. 1.

On stumps. Rarc. Appin, Capt. Carmichael.
13. T. tubercularia, B.; crumpent; stem short, cylindrical; head pilcate, dirty-white, nearly black when dry.Tubcreularia albida, B. in Eng. Fl. l. c. p. 354.

On fallen branches. Not uncommon.
14. T. torta, Willd.; minutc, round, depressed, gyrosotuberculate, ycllow or orange.

On decorticated oak-branches. Very common. Two or thrce lincs across.
15. T. versicolor, B. and Br . ; minutc, orbicular, orange, at length brown.-Ann. of Nat. Hist. ser. 2. vol. xiii. p. 406.

On Corticium nudum. In several localitics. Minutc, tearlike, pale when young.
16. T. viscosa, P.; cffused, resupinatc, hyalinc, at first whitc, undulatcd.-Pers. Obs. ii. 18. Corticium viscosum, Fr.

On dead wood. Not uncommon. This has the structure of Tremella, as will be scen by the figure in Ann, of Nat. Hist. xiii. t. 15. f. 4.
17. T. epigæa, B. and Br.; effused, gelatinous, gyroso-plieate, white.-Ann. of Nat. Hist. ser. 2. ii. p. 266, with fig.

On the ground. Rare. Leigh Wood, Bristol. Spreading over the naked soil, on whieh it forms a thin, white, gelatinous stratum.

46. EXIDIA, $F r$.

Tremulous, margined, fertile above and glandular, barren below.
l. E. recisa, Fr. ; very soft, truneate, plane, eostate, somewhat waved, brown amber-eolour, rough with little speeks below ; stem very short, exeentrie, oblique.-Eng. Bot.t. 1819.

On dead branches of willows, often before they fall. Very eommon.
2. E. glandulosa, Fr.; effused, flattened, thick, undulated, nearly blaek, rough with eonieal papillæ, einereous, and somewhat tomentose beneath.-Eng. Bot.t. 2448, 2452 ; Huss. i. $t .42$.

On dead branches of oak, ete. Common. The under side feels like black crape. Sometimes truncate, sometimes pendulous.
3. E. saccharina, $F r$.; tubereular, gyroso-undulate, thiek, tawny-einnamon, sprinkled with scattered papillæ.

On lareh. Rare. Mossburnford, A. Jerdon.

47. HIRNEOLA, Fr.

Gelatinous, eup-shaped, horny when dry. Hymenium often more or less wrinkled ; interstices even, without papillæ ; outer surface velvety.

1. H. auricula-Judæ, B.; thin, eoncave, flexuous, at length blaek, venoso-plicate without and within, tomentose bencath. (Plate 18, fig. 7.)-Huss. i. $t .53$.

On elder and elms. Very eommon. Our figure is from specimens on elms whieh have the surface of the hymenium freer from folds. I do not, however, eonsider it a distinet speeies.

48. NњMATELIA, Fr .

Nucleus solid, heterogeneous, eovered with a gelatinous stratum, whieh is everywhere elothed with the hymenium.

1. N. encephala, Fr.; nearly sessile, pulvinate, plieatorugose, pale flesh-eoloured, then brownish.-Willd. Bot. Mag. i. $t .4$. $f .14$.

On pine-rails. Rare. Loeh Lomond. Wales, Mr. Ralfs. Looks like the brain of some animal. Nueleus large, opaque, white.
2. N. nucleata, Fr.; sessile, flat, somewhat gyrose, white, then brownish-yellow.

On rotten wood. Rarc. Sometimes eonfounded with Tremella albida, from whieh it differs in the presence of a small white nucleus. I see no differenee between British and Ameriean specimens.
3. N. virescens, Cd.; small, roundish, depressed, gyrosotuberculate, or quite even, green.-Fl. Dan. t. 1857, f. 1.

On furze-branehes. Common.

49. DACRYMYCES, Nees.

Homogeneous, gelatinous. Conidia disposed in moniliform rows. Sporophores elavate, at length bifurcate.

1. D. violaceus, $F r$.; small, compaet, somewhat eompressed, gyrose, violet.

On trunks of pear-trees. Rare. Relhan.
2. D. deliqueseens, Duby ; pulvinate, slightly waved and plicate, yellow.

On fallen pine-branches. Not uneommon. From a quarter to half an inch across. Spores triseptate.
3. D. stillatus, Nees ; roundish, eonvex, at first nearly even, at lengtl often eoneave, deep orange ; eolour persistent. (Plate 18, fig. 8.)-Grev. t. 159.

On pine-rails. Very common. Smaller than the last. Spores multiseptate. Generally barren. Ditiola nuda, B. and Br. Ann. of Nat. Hist. ser. 2. vol. ii. p. 267. t. 9. f. 4, is probably the fertile state of D. deliquescens, not of D. stillatus.
4. D. ehrysocomus, Tul.; small, yellow, gelatinous, eup-shaped.-Peziza chrysocoma, Bull.t. 376. f. 2.

On fir-branches. Not common.

50. APYRENIUM, Fr.

Stroma gelatinoso-carnosc, fibroso-floccosc, hollow, inflated. Hymenium smooth, when dry collapso-pubeseent.

1. A. lignatile, $F r$--Grev. $t .276$.

51. HYMENULA, $F r$.

Effused, very thin, maculæform, agglutinate, between waxy and gelatinous.

1. H. punetiformis, B. and $B r$.; gelatinous, punetiform, pallid, somewhat undulated; spores elliptie.

On decortieated fir-poles. Batheaston, C. E. B. Dirtywhite or very pale umber, slightly tinged with yellow.

52. DITIOLA, Fr .

Orbieular, margined, patellieform. Hymenium discoid, gelatinous, at first veiled.

1. D. radicata, Fr. ; dise ncarly plane, golden-yellow ; stem thiek, villous, white, rooting.-A. and S. t. 8. f. 6.

On pine-wood. Not common. East Bergholt, Dr. Badham. I have never been able to find asei in this plant, which I believe belongs to the Order Tremellini.

Fam. II.-GASTEROMYCETES.

Hymcnium more or less permanently eoneealed, eonsisting in most eases of elosely-paeked eells, of whieh the fertile ones bear naked spores on distinet spieules, exposed only by the rupture or decay of the investing eoat or peridium.

Order 7. HYPOGAI.

Hymenium permanent, not beeoming dusty or deliqueseent exeept when deeayed. Subteiranean.

53. OCTAVIANIA, Titt.

Peridium continuous or cracked, cottony, running dorn into the sterile base. Trama byssoid, casily divisible. Fruitbearing eavities or eells at first empty. Spores rough.

1. O. asterosperma, Vitt.; globose, dirty-white, then in parts æruginous-blue and blaek; stcrile base rather thiek; spores spherieal, deep ferruginous, eehinate.-Tul. t. 11. f. 1 .

Underground, adhering by the mycelium to twigs, ete. Rare. West of England, C. E. B.
2. O. Stephensii, Tul.; irregular, oblong, externally rufous, plicato-rugose at the base, eribrose, white within, milky, at length, when exposcd to the air, rufous; spores globose, at length eehinulate.-Hydnangium Stephensii, Berk. Ann. of Nat. Hist. xiii. p. 352.

Underground, or half-buried. Bristol, C. E. B. Smell like that of Lactarius theiogalus. Adhering by branehed fibrous roots.

54. MELANOGASTER, Cd.

Peridium adhering to ereeping branched fibres whiel traverse its surfaee, without any proper or distinet base. Cells at first filled with pulp. Spores smooth, mostly dark.

1. M. variegatus, Tul.; at first oehraecous, then reddishferruginous, minutely downy; walls of the eells dirty-white, yellowish, or orange ; pulp blaek ; spores minute.-Sow.t. 426.

Under beceh-trees, Lombardy poplars, etc. South-west of England. Not eommon. Sold in the market at Bath under the name of the Red Truffle. British speeimens never have the walls of the eells deeidedly yellow or orange. M. Broomeianus, B., seems, however, to be a mere variety of M. variegatus.
2. M. ambiguus, Tul.; very fetid, globose, dirty-olive, nearly even; walls of eells white, reddish when exposed to the air; pulp blaek; spores large, obovate.-Tul. t. 2. f. 5, and t. 12.f. 5.

Under fir-trees, ete. West of England, C. E. B. Apethorpe, Northamptonshire. Smell like that of asafoetida. Spores slightly aeute, or more commonly with a terminal papilla. A variety or distinet speeies, as large as the last, and having its bright rust-eolour, oceurred at Spye Park, in which the spores have very rarely any papillary apex. This is M. ambiyuus, β intermedius, B.

55. HYDNANGIUM, Wallr.

Peridium fleshy or membranaecous. Sterile base none. Trama vesieular. Cells at first empty, then filled with spores. Spores eehinate.

1. H. carotæeolor, Berk.; oblong, rootless ; peridium thin, rugulose, brick-red, orange within; spores subelliptie, pale, eelinulate. (Plate 20, fig. 1.) - Ann. of Nat. Hist. xiii. p. 351.

Under trees. Bristol, Dr. Stephens. Sometimes half exposed, as pointed out to me at Bristol by Mr. Broome and Mr. Thwaites. Colour exactly that of a carrot. Communicating to paper a lcmon-coloured stain.

56. HYSTERANGIUM, Fitt.

Peridium indchiscent, distinct, scparable. Cavitics at first empty. Substance cartilaginco-glutinous. Sporcs minute.

1. H. nephriticum, B. ; depressed, springing from a white, flat, branched, mombranous mycelium ; peridium firm, clastic, distinct, tomentose ; substance pale blue or grey, here and there grecnish ; cavities radiating from the base ; spores minutc, oblong, pale clay-colour.-Ann. Nat. Hist. xiii. p. 350.

Under trecs. Clifton, C. E. B. Smell at first like that of some Hypericum, then exactly that of a decaying Puff-ball. The spores in the closely allicd H. Pompholyx, Tul., are rosccoloured.
2. H. Thwaitesii, B. and Br.; subglobose, white, rufous when bruised ; peridium membranaceous; spores oblong api-culate.-Ann. of Nat. Hist. ser: 2. ii. p. 267.

Under trees. Bristol, C. E. B. Mycelium white, fibrillosc. Seldom flattened. Cavitics brownish-olive. The hymenium of Hysterangium is very like that of a young Phallus.

57. RHIZOPOGON, Tul.

Pcridium continuous or cracked, adhcring to crceping branched fibres, whieh traverse its surfacc. Cavitics distinet, at first empty. Spores smooth, oblong-elliptie.

1. R. rubescens, Tul.; white, then reddish, and at length livid-olive, furnished with a few fibrille ; substance very lacunose, dirty-white, then olive ; eavities always empty.

In sandy fir-woods. Chudleigh, C. E. B. At first nearly transparent, with white roots, and pink when touehed. Smell sometling like that of Melanogaster ambiguus when old, when young like that of sour ham.

58. HYMENOGASTER, Tul.

Peridium fleshy or thin, running down into an absorbing base. Cavities at first empty, radiating or irregular. Trama eomposed of elongated eells, but not of byssoid flocei, and therefore not easily separable. Spores various.

1. H. Klotzschii, Tul.; obovate, fibrillose at the base, dirty-white, within dull rufous-ochre; spores small, elliptie, obtuse at either extremity, nearly even.-Fl. Regn. Bor. t. 466.

Amongst soil. Very rare. In the Glasgow Botanie Garden, Klotzsch.
2. H. mutieus, B. and Br.; globose, quite white when young, then tinged with brown and eraeked, pale yellowbrown within; spores obovate, oblong, very obtuse.-Ann. of Nat. Hist. ser. 2. ii. p. 267.

Under trees. Stapleton Grove, Bristol, C. E. B. Smell very slight. Spores quite blunt.
3. H. luteus, Vitt.; peridium very thin, soft and silky, white, then brownish, bright yellow within; spores even, ovate or elliptie, oblong, yellow.-Tul. t. 1.f. 3.

In woods. Not uneommon.
4. H. decorus, Tul.; roundish, dirty-white, here and there yellow, rather firm, within lilac-brown and at length blackishviolet ; alssorbing base obsolete ; sporophores long, somewhat filiform; spores elliptie, obtuse or obtusely apieulate, rugulose, oelrraceous, then brown.-Tul. t. 10. f. 9.

In woods. Not uneommon. Distinguished readily by the filiform sporophores, whieh project into the cavities.
5. H. vulgaris, Tul.; roundisl, irrcgular, dirty-white, soon soiled, softish, within dirty-white, then dark-brown ; stcrile base minute ; spores oblong or lanecolate, oblong-aeute, attcnuated at the base, dark-brown when mature ; surface uneven.

In woods. Bristol, C. E. B. Apcthorpe.
6. H. pallidus, B. and $B r$.; smaller, roundcd, depressed, nearly smooth, white, then dirty tan-colour, rather soft, within white, then yellow, then pale brown; sterile base obsolete; spores lanceolatc, acute, shortly pedicellate, rather rough.Ann. of Nat. Hist. xviii. p. 74.

In a dry fir-plantation. Cotterstock, Northamptonshire. About size of horse-bean. Resembling somewhat H. luteus.
7. H. citrinus, Vitt.; rounded, gibbous, shining as if silky, lemon-coloured or golden-yellow, then rufous-black, of the same colour within ; substance firm ; spores lanccolate, apiculate, rugulose, reddish-brown, opaque. (Plate 20, fig. 2.)

In woods. Not uncommon. Small strong, chcese-like. Sporophores often deeply eoloured.
8. H. olivaceus, Vitt.; globose, but angular; peridium whitish, then tinged with yellow, rufous when bruised ; substanee white, theu of a dull buff, then rufous-olive, variegated with the white trama; spores pedicellate, mucronate, gencrally smooth.-Vitt. t. 5. f. 9.

In woods. Common in the west of England. Smell like that of Lactarius theiogalus, and in some specimens of $A g$. gambosus.
9. H. tener, B.; small, globose, soft, white, silky ; substanee pale pink, ihen grcyish-umber; sterile base conspicuous, white; spores broadly elliptic, with a papillary apex, minutely warty.-Ann. of. Nat. Hist. xiii, p. 349.

In woods. Not uneommon. Hazlebeeeh, Northamptonshire, C. E. B. Common in the West of England. Smell strong, pungent.
10. H. Thwaitesii, B. and $B r$.; small, globose, firm, dirtywhite, here and there stained ; substanee brown ; spores globose, rather rough, papillary.-Ann. of Nat. Hist. xiii. p. 349.

In woods. Very rare. Portbury, near Bristol, G. H. K. Thwaites. Spores more globose than in any other speeies, mixed however with a few which are oblong, larger than in H. tener, but smaller than in H. decorns. Interior membrane often eontracted.
11. H. pusillus, B. and $B r$.; very small, obovate or subdepressed, white ; sterile base large; substance dirty-white ; cells large ; spores pallid-rubiginous, short, broadly elliptie, with a papillary apex, at length rough.-Ann. of Nat. Hist. xviii. $p .75$.

On mossy ground, in woods. Rushton, Northamptonshire. About 2 lines high. Almost seentless, not turning blaek like the last when dry. Cavities larger.

Order 8. PHALLoIDEI.

Volva universal, the intermediate stratum gelatinous. Hymenium deliqueseent.

59. PHALLUS, L.

Pileus perforated at the apex, free all round, retieulate. Veil none.

1. P. impudicus, L.; pileus eonieal, retieulated; borders of the reticulations nearly entire ; stem white. (Plate 20, fig. 3.)-Grev. 1. 213.

In woods. Extremely eommon in some distriets, but loeal. Smell very fetid.
2. P. iosmos, B. ; pale reddisl-grey ; pileus conical, retieulated; borders of the retieulations strongly toothed.-Curt. Brit. Ent. x. $t, 469$.

Sandhills. Lowestoft. I have seen no fresh speeimens. Seent somewhat like violets at a distanee, but very offensive when the plant is dried.

60. CYNOPHALLUS, Pr.

Pileus adnate, imperforate, uneven. Veil none.

1. C. eaninus, $F r$.-Sow. $t .330$.

Amongst deeayed leaves, in woods. Loeal. Stem white or pinkish. Root filiform, branehed, ereeping in every direetion.

61. Clatherus, Mich.

Stem none. Reecptacle forming an ovate or globose network; branches of the network cellular within.

1. C. caneellatus, L. ; obovate, branehes of the reeeptacle anastomosing obliquely.-Huss. i. t. 86.

In woods. South of England and Ireland, as at the Isle of Wight, Torquay, ete. Very beautiful, but extremely fetid. Branehes resembling sealing-wax, eovered here and there with an olive sporiferous mass.

Order 9. TRICHOGASTRES.

Pcridium single or double. Hymenium at lengtl drying up into a dusty mass of threads and spores.

62. BATARREA, P.

Volva universal, eentral stratum gelatinous. Rcecptacle pileiform, bursting through the volva, scated at the top of a tall stem.

1. B. phalloides, P.; stem equal, spores brownish.

On sandhills, or in the hollow of old trees at the base. Rare. New Brighton, Rev. T. Higgins. Dropmore, etc. In habit resembling Phallus, in structure Tulostoma.-Sow. t. 390.

$$
\text { 63. TULOSTOMA, } P \text {. }
$$

Peridium thin, papyraccous, the outer coat scparating, distinct from the elongated stem.

1. T. mammosum, Fr.; stem cqual, somewhat scaly; mouth of the peridium prominent, mammæform, entirc.Sow. t. 406.

On old walls, amongst moss. Local. Not uncommon about London. The base of the receptacle is free all round. Stem nearly of the same texture as in Batarrea.

64. GEASTER, Mich.

Pcridium double, outcr distinct, persistent, bursting, and divided into several stellate lobes.

1. G. coliformis, P.; outer peridium multifid, expanded ; inner supported by many slender short stems; apertures numerous, ciliated.-Sow. t. 313.

On the ground. Local. Scarcely found except in Norfolk and Suffolk. One of the largest of the genus.
2. G. fornicatus, F. ; outer pcridium subquadrifid, scparating into two coats, connected at the tips of the divisions, and vaulted ; mouth conical, plicato-sulcate.-Sow. $t .198$.

On the ground, and in the eavity of hollow trees. Not common, though found oeeasionally in as high a latitude as Nottinghamshire.
3. G. striatus, $D C$. ; outer peridium multifid, simple, expanded ; inner subpedicellate ; mouth prominent, conieal, sul-eato-striate.

Amongst sand. Abundant at Yarmouth.
4. G. Bryantii, B. ; outer peridium, eoriaecous, expanded, multifid; inner pedicellate, with a groove round the top of the peduncle; mouth sulcato-plicate.

Under yew-trees, and on exposed fen-banks. Not eommon. Apethorpe, Northamptonshire. Thorney, Cambridgeshire.
5. G. limbatus, Fr .; outer peridium coriaceous, expanded, multifid ; inner pedieellate ; mouth fimbriato-pilose, depressed, rather aeute.-Sow. t. 312; Huss. i. $t .2$.

On the ground. Not eommon. There is no groove round the top of the stem, as in the last.
6. G. fimbriatus, Fr.; outer peridium multifid, expanded, flaeeid; inner sessile; mouth indeterminate, piloso-fimbriate. (Plate 20, fig. 4.) -Sow. t. 80.

In fir-plantations. Not uneommon. Sowerby's plant is eertainly the same as this, the mouth not being simply toothed, as in G. rufescens. The figure in Plate 20 does not sufficiently show the true eharaeter of the apcrture.
7. G. mammosus, Chev.; outer peridium multipartite, rigid, hygrometrie; laeinix equal ; inner sessile; mouth eiliatc, aeutely conie, in a eireular dise.-Sow. t. 401.

On the ground. Extremely rare. I have seen only the speeimen figured by Sowerby.
8. G. rufescens, P.; outer peridium multifid, at length revolute ; inner sessile, naked; mouth toothed.

In pastures. Bardon Hills, Leieestershirc. Northampton-
shirc. My plant has an irregular toothed mouth. An authentie specimen of Persoon is G. fimbriatus, and so perhaps arc some of Schmidel's figures.
9. G. hygrometricus, P.; outcr pcridium multipartite, thick, rigidly inflexed when dry ; inner sessile, subreticulate, bursting irregularly.-Bolt. t. 179.

On the ground. Very rarc. Swain's Moor, near Halifax. The hard, horny outcr peridium, and scurfy or reticulate, irregularly bursting inner peridium, readily distinguish this speeies, whieh, though so rare herc, is common on the Continent.

65. BOVISTA, Dill.

Peridium like paper (or pasteboard), persistent. Bark distinct, at length shelling off. Capillitium equal, attached on all sides to the peridium. Spores pediccllate.

1. B. nigreseens, P.; subglobose ; pcridium tough, paperlike, at length blackish-umber; bark even, entirely evanescent ; capillitium thick, purple-brown, as well as the spores. (Plate 20, fig. 5.)
In pasturcs. Very eommon. Larger than the next.
2. B. plumbea, P.; globose ; pcridium paper-likc, flexible, lcad-coloured; bark persistent at the base; mouth narrow; capillitium and spores brown. (Plate 20, fig. 6.)

In pastures. Even more common than the last.

66. LYCOPERDON, Tourn.

Pcridium membranaccous, vanishing above or bccoming flaceid. Bark adnatc, subpersistent, breaking up into seales or warts. Capillitium adnate to the peridium and to the stcrilc basc.

1. L. giganteum, Batsch; peridium very brittle above and obtuse, eraeking into areæ, evaneseent, very widely open; bark floecose, rather distinet; eapillitium vanishing, together with the dingy-olive spores.-Grev. $t .336$; Huss. i. $t .26$.

In pastures. Loeal. Esculent when young. Attaining sometimes a very large size. Used as an anæsthetie.
2. L. cælatum, Fr.; peridium flaceid above, eollapsing, obtuse, dehiseent at the apex, at length open and eup-shaped; barren stratum ecllular; inner peridium distinet all round; spores dingy-yellow. (Plate 20, fig. 7.)-Huss. ii. t. 23.

In pastures, etc., often forming rings. Very common and variable.
3. L. atro-purpureum, Vitt.; peridium flaeeid, dingy-rufous, opening by a minute obtuse mouth; bark at first rough with minute spines; sterile base cellular, continuous with the eapillitium ; spores largish, pedieellate, brown-purple, cehinu-late.-Vitt. Mon. t. 2. f. 6.

On downs. West of England, C. E. B.
4. L. pusillum, $F r$.; peridium entirely flaceid, persistent, obtuse, always bursting by a narrow mouth; bark even, then rimose with adpressed seales; sterile stratum obsolete, continuous with the eapillitium; spores olivc.-Bolt. t.117.f. C.

In pastures. Not common. Lea, Lineolnshire, ete. A small speeies.
5. L. saccatum, Vahl; peridium lens-shaped, seurfy, obtuse, craeking into areæ, fugaeious, very thin, as well as the adnate bark; eapillitium eompact, persistent; spores dingy-umber.-Huss. i. t. 14.

In thiekets, or on their borders. Rare. Kent. Bath. Laxton, Northamptonshire. Peridium plieate beneath.
6. L. gemmatum, Fr.; peridium membranaeeous, persistent, narrowed at the base, opening with an umbonate mouth;
bark farinaecous, adnate, eovered with more or less spinulose warts ; flocei forming a sort of eolumella; spores yellow, inelined to green.-Huss. i. $t .54$.

In meadows, ete. The eommonest speeies of the genus, and very variable.
7. L. pyriforme, Scheeff.; peridium membranaeeous, persistent, somewhat pyriform, umbonate; bark innate, covered with minute fugaeious seales; eolumella eonieal, greenishyellow, as well as the spores.-Huss. i. t. 70; Grev. t. 304.

On decayed stumps, ete. Common. Root white, branehed, ereeping.

67. SCLERODERMA, P.

Peridium firm, with an innate bark, bursting irregularly. Flocei adhering on all sides to the peridium, and forming distinct veins in the eentral mass. Spores large, granulated.

1. S. vulgare, Fr.; nearly sessile, irregular ; peridium laard, corky, bursting by an indefinite aperture ; inner mass bluish-black; spores dingy. (Plate 15, fig. 4, in part.) Huss. i. t. 17.

On the borders of woods, ete. Common. Peridium variously areolate, warty or sealy, sometimes ncarly even.
2. S. Bovista, $F r$.; nearly sessile, irregular; peridium thin, soft, bursting irregularly; bark inclining to peel off; floeei yellow ; spores dingy-olive.

On sandy ground. Not eommon. Kuown by its thinner peridium and yellow floeei.
3. s. verrucosum, P.; somewhat stipitate; peridium rounded, somewhat warty, thin above and brittle; eentral mass purple-blaek; spores and floeei brown.-Grev. t. 48 ; Huss. i. t. 17.

On sandy ground, ete. Not uneommon. Care must be
taken not to confound this with stipitate forms of the two forcgoing specics.

68. POLYSACCUM, $D C$.

Common peridium simple, rigid, bursting irregularly ; internal mass divided into distinct cells, filled with peridiola. Spores mixed with threads.

1. P. olivaceum, F r. ; peridium roundish, olive, as well as the regular minute peridiola; stem short, abrupt, almost root-less.-Sow. t. 425 a, b.

On the ground (not on sandhills). Extremely rarc. Highgate. I have scen no specimen, and am thercfore uncertain whether it is really distinet from P. pisocarpium.

69. CENOCOCCUM, Fr .

Peridium naked, thick, carbonaeeous, indchiscent, at length hollow, with the walls dotted with dust-like spores.

1. C. geophilum, Fr.; black; spores of the same colour.Sow. t. 270.

In woods, where the soil is peaty. Common. About the size of a veteh. The proper situation of this genus is very doubtful.

Order 10. MYXOGASTRES.

At first pulpy, at length filled with flocei and dust-like spores.

> 70. LYCOGALA, Mich.

Peridium eomposed of a double membrane, papyraceous,
persistent, bursting irregularly at the apex, externally warty or furfuraceous. Flocci delicate, adnate to the peridium.

1. epidendrum, Fr.; Grev.t. 38. On decaycd wood.*
2. parietinum, Fr.; Schrad. Nov. Gen.t. 6. f. 1; (no. 381). On damp paper, basket-work, etc.

71. RETICULARIA, Bull.

Peridium indeterminate, simple, thin, naked, bursting irregularly, fugitive. Flocci attached to the peridium, flat, branched, subreticulate.

1. maxima, F r. On felled trees.
2. atra, $F i$: ; Sow. t. 257. On felled pines.
3. umbrina, Fr . (Plate 20, fig. 5.) Sow. t. 272. On old rails, etc.

* Specific characters are given of those specics only which can be readily made out with nothing more than a common lens. A mere list is appended of the smaller species, a full account of which, or a refercnce to where such an account exists, will be found either in the 'English Flora' or in Taylor's Journal, the number in that Journal being indicated where the plant is not contained in the first-mentioned work. The place of each number in the Journal may be found from the following schedule:-

72. 届HALIUM, $L k$.

Peridium indeterminate, externally covered by a floceose evaneseent bark, eellular within from the confluent interwoven floeci.

1. septicum, $F r$. In woods, on various substances.
2. vaporarimm, Fr.; Grev. t. 272. In stoves, on bark.

73. SPUMARIA, P.

Peridium indeterminate, simple, erustaccous, floceulosoeellular. Spores surrounded by membranaeeous, aseending, often sinuous folds.

1. alba, DC.; Grev. t. 267. On living eulms of grass, ete.

74. DIDERMA, P.

Peridium double; external, distinet, erustaeeous, smootl; internal delieate, evaneseent, attaehed to the straggling floeei, with or without a columella.

1. floriforme, P. Syn. p. 165 ; Bull. t. 371 . On deeayed wood, ete.
2. umbilieatum, P. l.c.; Fl. Dan. 1972. f. 1. On dead bark, ete.
3. eitrinum, Tr.; Tl. Dan. 1312.f. 1. On Sphagnum.
4. vernieosum, P. Obs. t. 3. f. 7; Grev.t. 111 . On dead leaves, etc.
5. spumarioides, $F r$; $F l$. Dan. 1798. f. 2. On moss, dead leaves, ete.
6. Trevelyani, Fr.; Grev. t. 132. On mosses.
7. Carmiehaelianum, B. in Engl. Fl. l. c. p. 311. On mosses.
8. nitens, Klotzsch; Engl. Fl. l. c. On bark.
9. globosum, Fr.; Grev. t. 122. On dead leaves.
10. eyaneseens, $F r$. On dead and living leaves.
11. deplanatum, Fr. On dead oak-leaves, ete.
12. contextum, P. Obs. i. p. 89; Ditm. in Sturm, i. $t .39$; (no. 109). On dead grass, fern, ete.

75. DIDYMIUM, Schrad.

Peridium scaly or floccose, bursting irrcgularly.

1. melanopus, $F r$. (no.382), and β clavus ($n 0.110$). On various substances.
2. hemisphericum, Fi.; Sow. t. 12. On dead twigs, etc.
3. furfuraceum, $F r$. (no. 734). On dead leaves.
4. tigrinum, Fr.; Sclirad. t. 6. f. 2, 3 ; (no. 383). On decayed wood.
5. squamulosum, A. and S. t.4.f.5. On dead leaves, etc.
6. farinaceum, Er.; Schrad.t. 5. f. 6. On dead leaves, etc. $^{\text {. }}$.
7. nigripes, Fr.; Ditm. t. 42. On rotten wood.
8. pertusum, B. Eng. Fl. l. c. p. 313. On dead herbaceous stcms.
9. xanthopus, Fr. ; Ditm. t. 43 ; (no.111). On dead leaves.
10. leucopus, $F r$.; Lk. Diss. i. p. 27. On dead leavcs, ctc.
11. Sowerbeii, B. ; Sow. t. 41.2.f. 3. On a decaying bulb.
12. lobatum, Nees, Syst.f. 104. Ou mosses.
13. congestum, B. and $B r$. (no. 384). On dead leaves, grass, ctc.
14. dredaleum, B. and Br. (no. 385). In a cucumber-frame.
15. physaroides, Er. On dead wood, mosses, etc.
16. cinereum, Fr.; Batsch, f. 169. On various decaying substanees.
17. serpula, $F r$. On dead leaves.

76. PHYSARUM, P.

Peridium simple, membrauaceous, very delicate, naked, quite smooth, bursting irregularly. Columella nonc.

1. nutan3, P., and γ aureum, Grev. t. 124. On decayed wood.
2. bulbiforme, Schum.; Fll. Dan. t. 1974. f. 3. On rotten wood.
3. rubiginosum, Chev.; Ft. Par. p. 338. On bark, amongst moss.
4. lilacinun, $F r$: $(n 0.215)$. On decayed wood.
5. metallicum, B. (no. 29, with a figure). On elder-sticks.
6. album, Fr.; Grev. l. 40 . On dead leaves, etc.
7. atrum, lr. (no. 216). On fallen oak-branches, ctc.

77. ANGIORIDIUM, Grev.

Pcridium membrauaccous, opening by a longitudinal fis-
sure. Floeei adhering to the pcridium on all sides, reticulate, flat, cnding above in the inner peridium.

1. sinuosum, Grev. t. 310. On dead leaves, ctc.

78. BADHAMIA, B.

Peridium naked or furfuraceous. Spores in groups, ellelosed at first in a hyaline sae.

1. hyalina, B. Physarum hyalinum, P. Disp. t. 2.f.4. On decayed wood.
2. utricularis, B. Physarum utriculare, Fr.; Bull. t. 417.f. 1.
3. nitens, B. in Trans. Limu. Soc. xxi. p. 153 (no. 731). On dccayed wood.
4. pallida, B. l.c. (no. 732). On decayed wood.
5. fulvella, B. l.c. p. 154 (no. 733). On decayed wood.

79. CRATERIUM, Trent.

Peridium simple, papyraceous, rigid, persistcnt, elosed at first with a deeiduons opereulum. Flocci congester, erect.

1. pedunculatum, Trent; Ditm.l.c. t. 9. On dead twigs, cte.
2. pyriforme, Ditm. l.c. t.10. On dead leaves, etc.
3. minutum, Fr .; Sow. t. 239. On dead leaves, etc.
4. lcucocephalum, Ditm. l. c. t. 11 ; Grev. t. 65. On dead leaves, etc. 5. mutabilc, Fr . On bark, moss, ete.

$$
\text { 80. DIACHEA, } F r \text {. }
$$

Peridium very delieate, simple, falling off in fragments. Capillitium subretieulate, springing from a grumous, pallid eolumella.

1. clegans, Tr.; Bull. t. 502.f. 2 ; (no.112). On dead leaves, etc.

81. STEMONITIS, Gled.

Peridium very delieate, simple, evaneseent. Capillitium retieulate, springing from the dark, penetrating stem.

1. fusea, Roth; Grev. l. 170. On old stumps, ete.
2. fcrruginea, Lhrb. Silv. Ber.f. 6 A, B. On old stumps, ete.
3. typhoides, DC.; Batsch, f. 176 ; (no.113). On dead leaves, etc.
4. ovata, P.; Fl. Dan. t. 2091.f. 1 ; Sow. t. 259. On old wainscoting, ete.
5. obtusata, Fr.; Fl. Dan. t. 2091. f. 2. On dead wood.
6. pulchella, Bab. (no. 217, with a figure). On dead Pteris aquilina.
7. Physaroides, A. and S. t. 2. f. 8 (no. 386). On mossy stumps.
8. violaeea, Fr. (no. 387). On moss.
9. arcyrioides, Somm. (no. 114). On dead laurel-lcaves.

82. ENERTHENEMA, Bowm.

Peridium very delieate, simple, evaneseent, exeept at the apex, where it is adnate with the dilated top of the penetrating dark stem. Capillitium dependent, attached to the dilated dise. Spores surrounded by a eyst.

1. elegans, Borm. in Linn. Tr'. xvi. l. 16. (Plate 1, fig. 6 c.) Stemonitis papillata, P. On deeayed wood.

83. DICTYDIUM, Schrad.

Peridium simple, very delieate, retieulated or veined from the innate eapillitium.

1. umbilicatum, Schrad.; Grev. t. 153. On pine-stumps.

84. CRIBRARIA, Schrad.

Peridium simple, persistent below, vanishing above. Floeei innate, forming a free network in the upper half of the peridium.

1. intermedia, B.; Sow. t. 400. f. 5. On rotten wood.

85. ARCYRIA, Hill.

Pcridium simple, upper portion very fugacious. Capillitium elastic. Flocei not spiral.

1. punicea, P.; Sow. t. 49 ; Grev.t. 130. On decayed wood.
2. incarnata, P.; Ols. t. 5. f. 4, 5. On decayed wood.
3. cinerea, Schum.; Bull. t. 477.f. 3. On decaycd wood.
4. mitans, Tr.; Sow. t. 260; Grev. t. 309. On decayed wood.
5. umbrina, Schum.; Il. Dan. t. 1975.f. 1 ; (no.389). On decayed woorl.
6. ochroleuca, Fr.; Ditn. l. c. t. 8 ; (no.115). On dccayed wood.

86. OPHIOTHECA, Curr.

Peridium simple, bursting longitudinally. Capillitium twofold, one consisting of delicate liyaline threads, to which the spores are attached; the other of echinulate, thieker, branehed filaments.

1. chrysosperma, Curr. Micr. Journ. ii. p. 240. t. 9.

87. TRICHIA, Hall.

Peridium simple, persistent, membranaceous, bursting irregularly above. Threads spiral.

1. rubiformis, $P_{\text {. ; Disp. t. 4.f. 3. T. Neesiana, } C d . ; \text { (no. 218). On }}^{\text {(n) }}$ dend wood.
2. pyriformis, Hoffm. Feg. Crypt. t. 1.f. 1. On decayed mood.
3. Ayrcsii, B. and Br. (no. 390). On dccayed wood.
4. Loriuseriana, Cd. Fasc. i. f. 288; Currey, in Mic. Journ. v. p. 129.
5. scrotina, Schrad.; Journ. Bot. 1799. t. 3. f. 2; (no. 391). On decayed wood.
6. fallax, P.; Obs. t. 3. f. 45. On decayed wood.
7. clavata, P.; Soro. t. 4.00.f. 6. On decayed wood.
8. cerina, Ditm. l. c. t. 25 ; Currey, l.c. p. 127. On decayed wood.
9. nigripes, P.; Curvey, l.c. p. 128.
10. turbinata, With.; Sow. t. 85. On decayed wood.
11. chrysosperma, DC.; Grev. t. 281. On decayed wood.
12. varia, P.; Batsch, f. 171. On decayed wood.
13. serpula, P.; Grev. t. 266. On dead leaves, etc.

88. PERICH ANA, $F r$.

Peridium simple, submembranaecous, persistent, naked, often splitting horizontally in the middle. Floeei few, not spiral.

1. abietina, $F r$.; Sow. t. 2558. On decaying fir-wood.
2. populina, Fr.; Grev. t. 252. On decaying poplar.

89. LICEA, Schrad.

Peridium thin, membranaceous, even, bursting inregularly. Spores not mixed with floeei.

1. cylindrica, Fr.; Soro. t. 199. On soft rotten wood.
2. fragiformis, Fr.; Grev. t. 308. On soft rotten wood.
3. applanata, B. (no. 292). On sticks.
4. perreptans, B.; Sow. t. $400 . f .1$; (no. 392). On hotbeds.

90. PHELONITIS, Chev.

Peridium paper-like, persistent, commonly splitting horizontally in the centre. Spores large, rough.

1. strobilina, Pr.; Grev. t. 275. On fallen fir-cones.

Order 11. NIDULARIACEI.

Spores produced on sporophores compacted into one or more globose or diseiform bodies, contained within a distinet peridium.

91. CYATHUS, P.

Peridium composed of three elosely eomneeted membranes,
at length bursting at the apex, and closed by a white membrane. Sporangia plane, umbilicate, attached to the walls by an elastic cord.

1. striatus, Hoffin.; obconic, truneate above and below, externally ferruginous, hairy, within lead-coloured, smooth, striate. (Plate 2, fig. 3.) On sticks, fir-cones, etc. Not uncommon.
2. vernicosus, $D C$. ; bell-shaped, narrow at the base, nearly sessile, quite even, cxternally ochraceous or cinercous, minutely downy, at length smooth, within lead-coloured or brown. (Plate 21, fig. 1.) On the ground, cspecially in stubble-fields. Common.

92. CRUCIBULUM, Tul.

Peridium consisting of a uniform, spongy, fibrous felt, closed by a flat furfuraccous cover of the same colour. Sporangia plaue, attached by a long cord, springing from a little nipple-like tubercle.

1. vulgare, Tul. (Plate 2, fig. 1.) On fern, sticks, ctc. Not uneommon.

93. SPH ${ }^{\text {FROBOLUS, Tode }}$

Pcridium double; the inner at length inverted elastically, and cjecting a solitary subglobose sporangium.

1. stellatus, Tode ; globose, palc yellow ; mouth regular, stcllato-deutate. (Plate 21, fig. 2.) On sawdust, twigs, etc. Not uncommon.

94. POLYANGIUM, $L k$.

Pcridium subhemispherical, hyaline. Sporangia large in proportion, grumous within.

1. vitellinum, Dilm. l.c. l. 27. On fallen trunks. Very rare. King's Cliffc.
Atractobolus ubiquitarius is simply the eggs of some Rhipignathus; Myriococcum and Thelebolus were introduced into
the 'English Flora' on the authority of Loudon, but it is not certain that they were ever found in Great Britain.

Fam. III.-CONIOMYCETES.

Spores either solitary or concatenate, produced on the tips of generally short threads, which arc cither naked or contained in a peritheeium, rarely compacted into a gelatinous mass.*

Order 12. SPHAKONEMEX.

Perithecium more or less distinct.

95. CONIOTHYRIUM, Cd .

Perithecium membranaceous, bursting irregularly or transversely. Spores simple, at length frec.

1. glomeratum, Cd. Fasc. 4.f. 108 (no. 752). On elm planks.
2. LEPTOSTROMA, $F r$.

Peritheeium mombranaceous, flat, breaking off at the base. Spores simple, minute.

1. caricinum, $I r$.; Obs. ii. t. 7.f. 4. On dead sedges.
2. juneinum, Fr. (no. 108). On dead rushes.
3. filicinum, Fr.; Soro. l. 394.f. 10. On dead Pteris aquilina.
4. litigiosum, Desm. On dead Pteris aquilina.
5. Spirææ, I'r. On dead Spiraa Ulmaria.
6. vulgare, Tr. (no. 205). On varions dead herbaeeous plants.

97. PHOMA, $F r$.

Pcrithecium punctiform or subglobose, often spurious or

[^33]ineorporated with the matrix, diseharging the minute simple spores by a small orifice at the apex. Spores mostly hyalinc.

* Spores slighttly coloured.

1. coneentrienm, Desm. (no. 197). On leaves of Yucca and Agave.
2. Hederæ, Desm. (no. 350). On dead ivy-stems.
** Spores hyaline.
3. asteriscus, B. and Br. (no. 394). On dead stems of Heraclenn.
4. nothum, B. and $B r$. (no. 395). On dead plane-iwigs.
5. lingam, Desm. no. 1877 (no. 395). On old eabbagc-stalks.
6. radula, B. and $B r$. (no. 396). On dead plane-twigs.
7. depressum, B. and Br. (no. 397). On twigs of Robinia Pseudacacia.
8. criophorum, B. and $B r$. (no. 812). On deenying ehestuuts.
9. samarorum, Desm. no. 349 (no.398). On dead ash samara.
10. piccum, B. and Br. (no. 399). On rose-leaves.
11. stietieum, B. and Br. (no. 400). On dead box-twigs.
12. exiguum, Desm. (no. 1869). On dead elder-shoots.
13. devastatrix, B. and Br. (no. 813). On Lobelia.
14. mieroseopicum, B. and Br. (no. 401). On Potamogeton.
15. nebulosum, $B .=\mathrm{Sp}$. nebulosa, P. On dead herbaeeous stems.
16. longissimum, $\mathcal{B} .=\mathrm{Sp}$. longissima, P. On dead stems, Umbelliferce, ete.
**** On bleached wood.
17. inophilum, B. (no. 735). On maple planks.
18. mueiferum, B. (no. 736). On elm planks.
19. ulmicola, B. (no. 737). On elm planks.
20. epileueum, B. (no. 738). On pine planks.
21. fibrieola, B. (no. 739). On pine planks.
22. bieuspidatum, B. (no. 740). On pine planks.

98. LEPTOTHYRIUM, Kze.

Perithecium flat, irregular, at length breaking off at the basc. Spores cylindrical-oblong or irrcgular.

1. Juglandis, Lil. no. 164 (no. 402). On walnut-leares.
2. Fragariæ, Lib. (no. 162). On strawberry and Potentillce.
3. Ribis, Lib. (no. 258). On leaves of red currant.

99. ACTINOTHYRIUM, Kze.

Perithecia orbicular, radiato-fibrous. Spores fusiform, slender, simple.

1. graminis, Kze.; Grev. t. 218. On dead grass.

100. CRYPTOSPORIUM, Kze.

Peritheeium always covered by the euticle, earnoso-membranaceous, at length pierced. Spores fusiform, simple.

1. Caricis, Cd. (no. 403). On sedge-leaves.
2. Neesii, $C d$. (no. 404). On birch-twigs.

101. SPH不RONEMA, Tode.

Perithecia free, opaque or hyaline. Spores minute, at length oozing out by the ostiolum, and forming a globule.

1. subulatum, Tode; Grev. t. 189. On dead Lactarii.
2. vitreum, $C d$. S. blepharistoma, B. (no. 57, with a fig., 196). On dead Lactarii and nettles.
3. leucoconium, B. and $B r$. (no.405). On decayed bcet.
4. epimyces, B. Sphæria epimyces, Ell. (no. 187). On Corticia.

Peritheeia at length free, distinet from the matrix, furnished with a papillæform ostiolum. Spores minute.

1. acuta, B. Sphæria acuta, IIofm. On dead nettcs.
2. complanata, B. S. complanata, Fr. in part. On dead stems.

Peritheeia distinct, carbonaceous. Sporcs various, simple, escaping by a perforation at the apex.

1. atro-virens, Lév. On dead mistletoe-twigs.
2. Candollii, B. and Br. Sphæria Buxi, DC. On dead box-leaves.
3. leucostigma, Lév. (no. 420). S. Hederæ, Sow. On dead ivy-leaves.
4. cylindrospora, Desm. (no. 4.18). On dead ivy-leaves.
5. Ralfsii, B. and Br. (no. 419). On dend ivy-leaves.
6. parca, B. and Br. (no. 420*). On dead leaves of Abies excelsa.
7. Strobi, B. and Br. (no. 421). On dcad leaves of Pinus Strobus.
8. genieulata, B. and $B r$. (no. 422). With the last.
9. epitrieha, B. and Br. (no.423). On liquisetum palustre.
10. mutiea, B. and Br. (no. 424). On elder.
11. menispora, B. and Br. (no. 425): On Typha latifolia.
12. malorum, B Sphærin malorum, B. in Eng. I'l. On decaying apples.
13. arundinaeca, Lér. $=$ Sph. arundinacea, Sorv. On dead leaves.
14. Taxi, B. On dead yew-leaves.
15. Alismatis, Curr.; Limn. Ir. xxii. p. 334. On Alisma Plantago.

104. DOTHIORA, Fr.

Nueleus slowly developed, gelatinoso-grumous, blaek, immersed in an erumpent stroma, subearbonaceous externally, fleshy within, always astomous. Spores pedieellate, obovate, simple.

1. pyrenophora, Fr. (no. 199). On twigs of apple.
2. sphæroides, $F r$. (no. 198). On ash-twigs.

105. CLINTERIUM, $F r$.

Peritheeium crumpent, free, earbonaceous, bursting by fissures at the apex. Nueleus gelatinoso-floceose. Spores simple.

1. obturatum, Fr. On leaves of ling.

106. ACROSPERMUM, Tode.

Peritheeia eylindrical, free. Sporcs long, asciform, flexuous, ereet.

1. compressum, Tode; Grev. t. 182. On various dead herbaceous plants, old ropes, etc. Must not be confounded with the very similar eggs of Crioceris Asparagi.
2. graminum, Lib. (no. 164). On dead grasses.

107. DIPLODIA, $F r$.

Peritheeia distinet, earbonaceous. Spores uniseptate, eseaping by a perforation at the apex.

1. mutila, Fr. (no. 407). On dead poplar-twigs.
2. confluens, B. and Br. (no. 108). On dead twigs of Daphne Laureola.
3. cæspitosa, B. and $B r$. (no. 409). On dead ivy-twigs.
4. vulgaris, Lév. (no. 410). On dead twigs of various trecs.
5. ilicicola, Desm. n. 988 (no. 206). On dead holly-twigs.
6. viticola, Desm. no. 989 (no. 207). On dead pine-shoots.
7. paupercula, B. and $B r$. (no. 406*). On dead plane-twigs.
8. Cowdellii, B. and Br. (no. 406). On damp cotton.
9. fibricola, B. (no. 741). On planks of Lombardy poplar.*
10. oospora, B. (no. 742). On bleached willow.
11. tecta, B. and $B r$. (no. 411). On dead laurel-leaves.
12. consors, B. and $B r$. (no. 412). On dead laurcl-lcaves.
13. arbuticola, Frr. (no. 188). On dead leaves of Arbutus Uva-ursi.
14. Ilicis, Curr. l. c. p. 329. Sph. Ilicis, Ir. On liolly-lcaves.
15. HENDERSONIA, B.

Perithecia distinct. Spores 2-multiseptate, eseaping by a terminal pore.

1. elegans, B. (no. 208, with a fig.). On dead reeds.
2. macrospora, B. and Br. (no. 413). On twigs of Philadelphus.

[^34]3. areus, B. and $B r$. (no. 413*). On dead box-twigs.
4. mutabilis, B. and $B r$. (no. 414). On dead plane-twigs.
5. polycystis, B. and $B r$. (no. 415). On dead birch-twigs.
6. oreades, Dur. and Mont.; Desm.(no.1268). On half-dcad oak-leaves.
7. Stephensii, B. and Br. (no.502). On dead Pteris aquilina.
8. fibriseda, \mathcal{B}. (no.743). On bireh planks.

109. DARLUCA, Cast.

Pcrithecia delicate. Spores containing a row of sporidiola, oozing out and forming a tendril.

1. filum, Cast. On various Uredines.
2. typhoidearum, B. and Br. (no. 417). On dead leaves of Typha.
3. maeropus, B. and Br. (no. 416). On dead leaves of Carices.

110. VERMICULARIA, Tode.

Pcrithecium thin, mouthlcss, generally bristly. Sporcs vermiculate.

1. dematium, Fr. On dead herbaceous stems.
2. trichella, Grev. t. 345 . On dead ivy-leaves.
3. atrancutaria, B. and Br. (no. 430). On dead potato-stems.
4. eircinans, B. in Gard. Chron. 1857. On skins of the white Noccra onion.

111. DISCOSIA, Lib.

Perithccium flat, opening at the basc. Spores septate, obliquely aristate at cither end.

1. alnea, Lib. Sp. artocreas, Tode. On dead leaves.

112. PILIDIUM, Kze.

Perithecium scutellæform, smooth, shining, opening irrcgularly. Sporcs curved, without any appendages.

1. accrinum, Kze. On dead sycamore-leaves.
2. carbonaeeum, Lib. (no. 44.2). Cenangium fuliginosum, Fr. Not, however, a good Pilidium. On dead willow-twigs.

113. MELASMIA, Lév.

Perithecium membranaccous, dehiscent above, rather swollen, at length depressed and rugose, growing in a thin, spotlike, effused receptacle. Spores minutc.

1. aeerina, Lév. (no. 443). On living syeamore-leaves. 2. aluea, Lév.; Grev. t. 146.f. 2. On living alder-leaves.

114. PIGGOTIA, B. and Br.

Perithecia irrcgular, very thin, obsoletc below, forming by coufluence a wrinkled mass, bursting by a lacerated fissure. Spores rather large, obovate, at length tomiparous.

1. astroidea, B. and Br. (no. 503). On living elm-leaves.

115. SEPTORIA, Fr.

Perithecia minute, more or less incorporated with the matrix. Spores oblong and scptate, or thread-shaped and continuous, discharged in little tendrils.

> * Spores septate.

1. Ulmi, Kze.; Grev. t. 112. On living elm-leaves.
2. Oxyacanthæ, Kze. On living hawthorn-leaves.
3. Aceris, B. and $B r$. (no. 432). On living sycamore-leaves.
4. salicella, B. and $B r$. (no. 746). On willow-twigs.

* Spores not septate.

5. Agopodii, Desm. On living leaves of Aig. Podagraria.
6. Lepidii, Desm. (no. 431). On living leaves of Lepidium Smithii.
7. nodorum, B. (no. 433). On joints of nearly ripe wheat-stalks.
8. Hippoeastani, B. and Br. (no.434). On living leaves of horse-chestnut.
9. lituus, B. and Br. (no. 744). On twigs.
10. Ralfsii, B. and $B r$. (no. 745). On apples.
11. insularis, B. and $B r$. (no. 747). On ivy-leaves.
12. Badhami, B. and Br . (no.748). On living vinc-leavcs.
13. polygonorum, Desm. (no.749). On living Polygona.
14. Convolvuli, Desm. (no. 195). On living bindweed.
15. cornicola, Desm. (no. 54). On living cornel. (Hendersonia, Curr.)
16. heterochroa, Desm. no. 1720 (no. 105). Sp. vagans, Fr.
17. graminum, Desm. (no. 103). On grass.
18. stemmatca, B. (no. 192). On living leaves of Vaccinium Vitis-idaa.
19. Hedcre, Desm. (no. 341). Sp. hederæcola, Tr. On ivy.
20. Populi, Desm. (no. 1731). Sp. frondicola, Fr. On poplar.
21. thecicola, B. and Br. (no. 424). On capsules of Polytrichum.

116. ASCOCHYTA, Lib.

Pcrithecia distinct, delicatc. Spores oozing out, uniseptate or simple.

1. Pisi, Lil. = Depazea concava, B. (no. 194, with a fig.). On pea-pods.
2. pallor, B. (no. 193, with a fig.). On living bramblc-stcms.
3. Dianthi, B. (no. 104, with a fig.). On living pink-leaves.
4. rufomaculnus, B. (Septoria, in Gurd. Chron. 1854, p. 676). On grasses.
5. CYSTOTRICHA, B. and $B r$.

Perithecia bursting longitudinally. Sporophores branched, articulated, beset here and there with oblong, uniseptate spores.

1. striola, B. and Br. (no. 448, with a fig.). On naked wood.

118. NEOTTIOSPORIA, Desm.

Perithccia conccaled, with a central perforation. Spores hyaline, crested.

1. caricum, Desm. (no.435). On dead sedge-leaves.

119. EXCIPULA, F.

Perithecia delieate, hispid, open above (exeipuliform). Spores hyaline, attenuated, but not appendieulate.

1. strigosa, Fr. On dead leaves of grass.
2. macrotricha, B. and .Br. (no. 444). On dead furzc.
3. chætostroma, B. and $B r$. (no. 445, with a fig.). On old ash-keys.
4. fusispora, B. and Br. (no. 814, with a fig.). On Clematis Vitalba.

120. DINEMASPORIUM, Lév.

Peritheeia open above (exeipuliform), delieate, hispid. Spores hyaline, aristatc at either extremity.

1. graminum, Lév. (no. 446). On dead grass.
2. MYXORMIA, B. and Br .

Peritheeium eomposed of floeei with free apiees, open above. Spores eoneatenate, involved in gelatine.

1. atro-viridis, B. and $B r$. (no. 447, with a fig.). On grass.
2. PROSTHEMIUM, Kze.

Peritheeia carbonaceous. Spores fasciculate, fusiform, septate, attached to artieulated threads.

1. betulinum, Kze. On dead birch-twigs.

123. ASTEROMA, $D C$.

Peritheeia flat, with no determinate orifiee, attaehed to ereeping branehed threads. Spores simple or uniseptate.

1. reticulatum, B3. On half dead Convallaria majalis.
2. Ulmi, $K l$. On living elm-leaves.
3. Pruncllæ, Purt. On living Prunella vnlyaris.
4. Padi, Grev. (no. 201). On living leaves of Prumus Padus.
5. Rosex, $D C$. (no. 202). Ou living rose-leaves.
6. Veronieæ, Dcsm. no. 778 (no. 55). On living V. officinalis.

124. RABENHORSTIA, $F r$.

Conceptacle thin, subearbonaccous, cup-shaped, dimidiate, above eovered with the adnate eutiele, eelluloso-loculose within. Ostiolum simple. Nueleus gelatinous.

1. rudis, T_{h}. On dead twigs of laburnum.
2. Tiliæ, Tr. On dead twigs of lime.

125. CYTISPORA, Fr.

Perithecia irregular, or compound and radiating. Spores minute, mostly curved, oozing out from a common apex in the form of globules or tendrils.

1. rubeseens, Fr. On dead iwigs of Rosacea.
2. ehrysosperma, Fr. On dead poplar.
3. earphosperma, Tr. On dead twigs of Rosacece.
4. leueosperma, P. On various trees.
5. fugax, $F r$. On clead willows.
6. Hendersonii, B. and Br. (no. 436). On twigs of Rusa arvensis.
7. Pinastri, $F r$. On fallen pine-leaves.
8. guttifera, Fr. On dead willow-twigs.

126. MICROPERA, Lév.

Peritheeia innate, membranaccous, gaping above, without any eommon ostiolum. Spores simple, linear.

1. drupacearum, Lév. (no. 437). On dead branches of eherry.
2. DISCELLA, B. and $B r$.

Peritheeium spurious, nearly simple, sometimes obsolete
above or cntirely wanting, and hence cxcipuliform. Sporcs elongated, simple or uniscptatc.

1. carbonacea, B. and $B r$. (no. 426 , with a fig.). On dead sallow twigs.
2. Desmazierii, B. and Br. (no. 427, with a fig.). On dead lime-twigs.
3. platyspora, B. and $B r$. (no. 428). On dead plane-twigs.
4. microsperma, B. and Br. (no. 429, with a fig.). On dead sallow-twigs.
5. abnormis, B. and Br. (no.429*). On dead elder shoots.

128. PHLYCTANA, Desm.

Perithecium spurious, simple, never deficient above. Spores clongated.

1. vagabunda, Desm. (no. 753). On dead teazle-stems.
2. Johnstonii, B. and Br. (nu. 639*). On dead Senecio Jacobaa.
3. CEUTHOSPORA, Fr.

Perithecium spurious, innate, stromatiform, multicellular. Spores ejected from one or more orificcs.

1. phacidioides, Grev. t. 253. On holly.
b. Desm. (no. 1626). = Cytispora pulveracea, B.
2. Lauri, Grev. t. 254. On the common laurel.
3. ERIOSPORA, B. and Br .

Stroma multicellular. Spores ejected by a common orifice, quaternate, filiform, seated on short sporophorcs.

1. leueostoma, B. and Br. (no. 438, with a fig.). On Typha.

Order 13. MELANCONIEI.
Pcrithccium obsolete, or altogether wanting.

131. MELANCONIUM, $L k$.

Spores simple, oozing out in a dark mass.

1. bicolor, Nees, including M. spharoideum, Lk. (no. 250). On birch.
2. magnum, B.; Grev. t. 345. On walnut and hornbcam.
3. sphærospermum, $L k$. (no. 251). On dead reeds.

132. STEGONOSPORIUM, $C d$.

Spores unilocular, the endochrome transversely septate or eellulose, oozing out in a blaek mass.

1. cellulosum, $C d$. On dead branches.

$$
\text { 133. STILBOSPORA, } P \text {. }
$$

Spores septate, oozing out in a black mass.

1. ovata, P. On dead twigs.
2. angustata, P. (no. 36). On cornel.

134. ASTEROSPORIUM, Kze.

Spores stellate, septate, oozing oft in a blaek mass.

1. Hoffmanni, M. and N. (no. 669). On dead birch.

135. CORYNEUM, Kze.

Spores septate, seated on a eushion-like stroma.

1. pulvinatum, Kze. On dead sycamore.
2. disciforme, Kze. (no. 450). On dead birch.
3. compactum, B. and $B r$. (no. 449). On dead elm-twigs.
4. Kunzci, Cd. On dcad oak-twigs.
5. microstichum, B. and Br. (no. 451). On dead twigs of rose, vine, etc.
6. PESTALOZZIA, De Not.

Spores septate, seated on a long pedunele, erested above.

1. Guepini, Desm. (no. 1084). On Camellia lcaves.

137. CHEIROSPORA, Fr .

Sporcs collected in bundles at the tip of hyalinc, filiform sporophores, forming moniliform threads.

1. botryospora, $F r$. (no. 441*). On becch-twigs.

138. NEMASPORA, P.

Sporcs colourcd, oozing out in large tendrils. Spores of two kinds, some minute, othcr's filiform, with a strong curvature.

1. crocea, P. On dead beech.
2. Rose, Desm. On dead rose.

139. MYXOSPORIUM, De Not.

Spores coloured, minute, of one kind, forming tendrils.

1. paradoxum, D. N. (no. 438). On ivy-leaves.
2. orbiculare, $B .=$ Cylisp. orbicularis, B. (no. 106, with a fig.). Ou gourds.
3. colliculosum, B.; Sow. t.409. On pear-leaves.

140. GLEESPORIUM, Mont.

Spores hyalinc, simple, of one kind, oozing out in the form of tendrils.

1. concentricum, B. and $B r$. $=$ Cylindrosporium concentricum, Grev. (no. 45 l). On living cabbage-leaves.
2. labes, B. and $B r$. (no. 450). On living poplar-leaves.
3. læticolor, B. (Gard. Chron. 1859, p. 604). On peaches and nectarines.
4. fructigenum, B3. (G:art. Chron. 1856, p. 245). On apples.

Order 14. TORULACEI.

Peritheciun altogether wanting. Fruetifying surface naked.

Spores compound, or arising from repeated division (tomiparous), very rarely redueed to a single cell.

141. TORULA, P.

Spores tomiparous, simple.

1. monilioides, Cd . On stieks.
2. ovalispora, B. $=$ Conoplea cinerea, P . On stumps.
3. pulvillus, B. and Br. (no. 463). On bark.
4. abbreviata, $C d$. $=\beta$. spharioformis, B. and Br. (no. 464). On deeortiented Pinus sylvestris.
5. basieola, B. and Br. (no. 465, with a fig.). On dead Nemophila.
6. Hysterioides, Cd. Fasc. i. f. 139 (no. 751). On poles.
7. eylindrica, B. On stieks.
8. Eriophori, B. On dead E. angustifolium.
9. herbarum, Lk. On dead herbaeeous stems.
10. Graminis, Desm. (no. 134). On Carices.
11. Plantaginis, Cd. (no. 252). On living Plantagines.
12. Sporendonema, B. and Br: (no. 462)=Sporendonemu casei, Desm. On eheese and rats'-dung.

142. BACTRIDIUM, Kzze.

Spores radiating, eolourcd or hyaline, oblong, multiseptatc.

1. flavum, Kze. On elm-stumps.
2. Helvelle, B. and Br. (no. 816, with a fig.). On Peziza testacea.
3. atrovirens, B. On stumps. Anomalous.

143. HELICOSPORIUM, Nees.

Parasitical. Spores filiform, articulated, spirally involutc.

1. vegetum, Nees (no. 229). On stieks.
2. pulvinatum, Fr. On old chips.

144. BISPORA, Cd.

Flocei tomiparous, moniliform, composed of didymous spores.

1. monilioides, Cdt.=Torula antennata, P.; Grev. t. 255. On old stumps.

145. SEPTONEMA, $C d$.

Flocci tomiparous, moniliform, composed of multiseptate spores.

1. spilomeum, B. (no. 466). On rails.
2. SPOROSCHISMA, B. and Br .

Flocei erect, simple. Outer membrane tough, inarticulate. Endochrome at length emergent, breaking up into quadriseptate spores.

1. mirabile, B. and Br. (no. 467). On beech.

147. SPORIDESMIUM, Lk.

Spores mostly irregular, pluricellular, springing immediately from the obscure mycelium, rarely borne upon a distinct peduncle, more rarely uniseptate.

1. polymorphum, $C d$. (no. 452). On decaying oak.
2. antiquum, $C d$., b. compactum, B. and $B r$. (no.453). On hard wood.
3. pyriforme, $C d$. (no. 454). On boards.
4. melanopum, B. and Br. (no. 455). Spiloma melanopum, Eng. Bot. t. 2358. On apple-bark.
5. scutellare, B. and Br. (no. 456). On larch-bark.
6. Lepraria, B. and Br. (no. 750). Lepraria nigra, Eng. Bot. t. 2409. Coniolliecium effisum, Cd. (no. 459).
7. fungorum, B. $=$ Epochuiun fungorum, Fr . On Corticiu, cte., Grev. t. 194.
8. uniseptatum, B. and Br. (no. S15, with a fig.). On Clematis.

148. CONIOTHECIUM, $C d$.

At length naked. Spores multicellular, irrerular, conglutimate.

1. amentacearum, Cd . (no. 460). On willow-twigs. 2. betulinum, $C d$. (no. 461). On bireh-twigs.

149. DICTYOSPORIUM, Cd.

Spores linguæform, ereet, plane, cellular. Cells subeoneentrie.

1. elegans, $C d$. (no. 458). On nàked oak.
2. TETRAPLOA, B. and $B r$.

Spores mostly quadriartieulate, growing together in fours, and each crowned with a jointed bristle.

1. aristata, B. and Br. (no. 457, with a fiy.). On grass.

151. ECHINOBOTRYUM, $C d$.

Parasitical. Spores uniecllular, stellato-faseieulate, ovatoaeuminate, rough.

1. atrum, Cd. (no. 457*). On black moulds.

152. GYMNOSPORIUM, Cd.

Myeelium very obseurc. Spores unicellular, arising apparently from the matrix.

1. Arundinis, $C d$. On reeds. The white Gymuosporia will be found under Ascomyces.

Order 15. PuCCINTAEI.

Parasitie on living plants. Peridium none. Spores producing on germination seeondary spores.
153. XENODOCHUS, Schlecht.

Spores multiseptate, moniliform, breaking up into many distinct articulations.

1. carbonarius, Schlecht. (no. 133). On living burnet-leaves.

154. AREGMA, $F r$.

Spores cylindrical, multiseptate, scarcely moniliform, borne on a loug peduncle.

1. bulbosum, Fr. On bramble-leaves.*
2. gracile, B. Puccinia gracilis, Grev. On raspberry-leaves.
3. mucronatum, Fr. Grev. t. 15. On rose-leaves.
4. acuminatum, Fr. On leaves of Poterium Sanguisorba.
5. obtusatum, Fr. Grev. t. 57. On leaves of Potentilla Fragariastrum.

155. TRIPHRAGMIUM, $L k$.

Spores trilocular ; septa mostly vertical and horizontal.

1. Ulmarix, $L k$. On leaves and stem of Spiraa Ulmaria.

156. PUCCINIA, P.

Spores uniseptate, supported on a distinct peduncle.

1. Graminis, P. Ou wheat, reeds, ctc.
2. striola, Lk. On Carices, Junci, Allia, etc.
3. coronata, $C d$. (no. 473). On grasses.
4. truncata, B. and Br. (no. 754). On Iris foetidissima.
5. Asparagi, DC. On stems and leaves of Asparagus officinalis.
6. Polygonorum, Lk. On Polygona.
7. Vaginalium, Lk. On Polygonum aviculare.
8. Primulæ, Grev. On common primrose.
9. Veronicarun, DC. On Feronica.
10. Glechomatis, $D C$. On ground-ivy.
11. Menthe, P. On mints.
12. Scorodonire, Lk. On Tencrium Scorodonia.

[^35]13. Serophulariæ, Lib. (no. 471). On Scrophularia aquatica.
14. Betonice, DC. On Betonica officinulis.
15. Vineæ, B. On Finca major.
16. enmpanulæ, Carm. (no.472). On Campanule and Jusione.
17. clandestina, Carm. On Scabiosa succisa.
18. eompositarum, Schlecht. On various Centaurea.
19. syngenesiarum, $L k$. On thistles.
20. glomerata, Grev. On Senecio Jacobca.
21. variabilis, Grev. t. 75. On Leonlodon Taraxacum.
22. Valantix, P. On Galium cruciatmn.
23. galiorum, Lk. (no. 253). On Galia and Aspernla odorata.
24. unbelliferarum, DC.; Girev. t. 42. On various Umbellifere.
25. Fgopodii, Lk: On Alg. Podagraria.
26. Sanieulæ, Grev. On Sanicula Europcea.
27. Bullaria, $L k$. On stems of hemloek, cte.
28. Smyrnii, Cd. (no.469). On Smyrnium Olusalrum.
29. Anemolles, P. On various speeies of Anemone.
30. Calthe, Lk. On Caltha palustris.
31. Violarum, $L /$. On violets.
32. Lyehnidearum, Lk. On various Caryophyllacece.
33. Umbiliei, Guép. (no. 470). On Cotyledon Umbilicus.
34. Rhodiolx, B. and Br. (no. 468). On Sedum Rhodiola.
35. Saxifragarum, Schlecht. On Adoxa moschalellina.
36. Chrysosplenii, Grev. On C. oppositifolium.
37. Epilobii, DC. On Epilobiun palustre.
38. pulverulenta, Grev. On Epilobinm montanum and hirsutum.
39. Cireææ, P. On Cirçace.
40. Prunorum, $L k$. On plum-leaves.
41. Fabæ, Lle.; Grev. t. 22. On bean-leaves.
42. Buxi, $D C$.; Grev. t. 17. On box-leaves.

157. GYMNOSPORANGIUM, $D C$.

Peduncles extremely long, agglutinated by gelatine into a tremelloid, expanded mass. Spores uniseptate.

1. Juniperi, Lk. (Plate 2, fig. 5.) On common jumiper.
2. PODISOMA, Lk.

Peduncles extremely long, agglutinated by gelatine into a common stem, spreading out above into a Clavarieform mass. Spores mostly uniseptate.

1. Juniperi-communis, $F r$. On stems of common juniper.
2. foliicolum, B. On lcaves of common juniper.
3. Junipcri-Sabinæ, Fr. (Plate 2, fig. 4.) On stcms of savinc.
4. UREDO, Lév.

Stroma composed of little irregular cells, forming a lentiform disc, whose surface is covcred with many layers of cells, each of which encloses a sporc. Spores simple, always without any appendage.

* Spores more or less yellow.

1. Potentillarum, DC. On Potentilla.
2. Saxifragarum, DC. On Saxifrages.
3. Filicum, Desm. On Cystopteris, etc.
4. pustulata, P. On Epilobia.
5. Hypericorum, DC. On Hyperica.
6. Caryophyllaccarum, Jolnst. On Stellariae.
7. Quercus, Brond. On oak.
8. Vacciniorum, P. On V. Vilis-Idaa.
9. confluens, P. On Mercurialis.
10. Alliorum, DC. On Allia.
** Spores brown.
11. Statiees, Desm. On different species of Stalice.
12. Cireere, A. and S. On Circea.
13. bifrons, Grev. On dock.

160. TRICHOBASIS, Lév.*

Spores free, attached at first to a short peduncle, caducous.

* Yellow.

1. Rubigo-vera, Lév. On cercals and grasscs.
2. lincaris, Lév. On cereals and grasses.
3. glumarum, Lév, On glumes of cercals.
4. Symphyti, Lév. On comfrey.
5. Pyrolæ, B. On Pyrola.
6. Petroselini, B. On Umbellifera.
7. Scnccionis, B. On groundscl.
8. Caricina, B. On Carices. ** Spores brown.
9. oblongata, B.; Grev. t. 12. On Luzula.
10. Scillarum, B. On Scillce.
11. Cichoraccarum, Lév. On thistles.
12. Artcmisix, B. On Artemisice.
13. Labiatarum, Lév. On Labiata.
14. Lychuidearum, Lév. On Caryophyllacere.
15. Umbellatarum, Lév. On Umbelliferce.
16. Heraclei, B. On ITeracleum.
17. Bctro, Lév. On beet.
18. Fabæ, Lév.; Grev. t. 95. On beans.
19. Galii, Lév. On Galia.
20. suavcolens, Lév. On thistles.
21. Polygonorum, B.; Grev. t. 80. On Polygona.
22. Vincæ, B. On Vinca major.

[^36]23. Geranii, B.; Grev. t. S. On geraniums.
24. Violarum, B. On violets..
25. Epilobii, B. On Epilobia.

161. UROMYCES, Lév.

Spores unilocular, attached permanently to a decided peduncle of greater or less length.

1. Alliorum, DC.
2. Ulmarix, Lév.; Grev. t. 19. On Spirca Ulmaria.
3. appendieulata, Lév. On various plants.
4. apiculata, Lév. On various plants.
5. Limonii, Lév. On Limonia.
6. Ficariæ, Lév. On Ranunculus Ficaria.
7. Primulæ, Lév. On primroses.
8. intrusa, Lév. On Alchemilla.
9. Tridis, Lév. On Iris foetidissima.
10. COLEOSPORIUM, Lév.

Spores cylindrical, septate, some separating at the joints, some of a different nature, persistent.

1. Tussilaginis, Lév. On coltsfoot.
2. pingue, Lév. On roses.
3. Petasitis, Lév. On eoltsfoot.
4. Campanulæ, Lév. On Campanula.
5. Sonehi-arvensis, Lév. On sow-thistle.
6. Rhinanthacearum, Lév. Oı Euphrasia, etc.
7. MELAMPSORA, Cust.

Spores of two orders, crowded into a dense compact mass, with or without a covering, wedge-shaped.

1. Euphorbix, Cast. On spurge.
2. poputina, Lév. On Populus nigra.
3. 'Tremulx, Tul. On Populus tremula.
4. betulina, Desm. On bireh.
5. salieina, Lév. On sallow.

164. LECYTHEA, Lév.

Stroma surrounded or sprinkled with elongated abortive spores. Spores free, invested with their mother-eell, or concatenate.

* Spores free.

1. Ruborum, Lév. On brambles.
2. Rosæ, Lév. On rose.
3. populina, Lév. On poplar.
4. Euphorbire, Lév. On spurge.
5. epitea, Lév. On willows.
6. mixta, Lév. On willows.
7. saliecti, Lév. On willows.
8. Baryi, B. (no.755). On grass.
9. Valerianæ, B. On Valeriana officinatis.
** Spores invested with another cell (Physonema, Lév.).
10. gyrosa, Lév. On raspberry. *** Spores concatenate (Podosporium, Lév.).
11. eapræarum, Lév. On sallow.
12. Lini, Liev. On Linum calharticum.
13. CYSTOPUS, Lév.

Reeeptaele eonsisting of thiek branehed threads. Spores coneatenate, at length separating.

1. candidus, Lév.; Grov. t. 251. On Capsella, Sisymbrium, etc.

166. POLYCYSTIS, Lév.

Spores irregular, eonsisting of several cells.

1. Colchici, Tur. (no. 485). On colchicum.
2. Violie, B. and Br. (no. 487). On violet.
3. parallela, B. and Br. (no. 486). On rye, etc.

167. TILLETIA, Tul.

Spores spherical, springing from delicate branched threads. Epispore reticulated.

1. Caries, Tul. On grains of wheat, etc.

168. USTILAGO, Lk.

Plant deeply seated. Spores simple, springing from delicate threads, or produced in the form of closcly packed cells, which ultimately brcak up into a powdery mass.

1. segetum, Dittm. On secds of cereals and other Graminere.
2. urceolorum, Thl. On seeds of Carices.
3. longissima, Tul. On leaves of Poa aquatica.
4. olivacea, Tiul. On seeds of Carices.
5. hypodytes, Fr. (no.481). On stems of various grasses.
6. Maydis, Cd. On stems, etc., of Indian corn.
7. Montagnei, Tul. (no. 479). On sceds of Rhyncospora alba.
8. typhoides, B. and Br. (uo. 480). On stems of recds.
9. Salveii, B. and Br. (no. 482). On leaves of Dactylis glonerata.
10. grammica, B. and Br. (no. 483). On stems of Aira aquatica.
11. vinosa, Tul. (no. 484). On seeds of Oxyria reniformis.
12. utriculosa, Tul. On secds of Polygona.
13. flosculorum, Tul. On flowers of scabious.
14. receptaculorum, Fr . On receptacles of goatsbeard.
15. antherarum, Tul. On anthers of Silene.

169. TUBURCINIA, Fr .

Plant decply seated. Spores multicellular, subglobose, or conchiform. Allicd to Sporidesmium.

1. scabies, B. (no.489). On potatoes.
2. Trientalis, B. and Br. On leaves of T. Europaca.

Order 16. afcidiacet.
Peridium distinetly eellular.
170. RGESTELIA, Reb.

Peridium elongated, the component eells at length separating or laeerated.

1. cancellata, Reb. On pear-leaves.
2. cornuta, Tul. ; Grev. t. 180. On mountain-ash.
3. lacerata, Tut. ; Grev. t. 209. On hawthorn.

171. PERIDERMIUM, Chev.

Peridium elongated, at length ruptured irregularly.

1. Pini, Chev. ; Grev. t. 7. On Scotch fir.
2. clatinum, Tul. On silver fir, altering both the foliage and ramification.

172. 再CIDIUM, P.

Peridium rarely elongated, opening by radiating refleeted teeth, or very short and bursting irregularly. Spores coneatenate.

1. Allii, Grev. On A. ursinum.
2. Ari, B. On A. maculatum.
3. rubellum, P. On docks.
4. Primulæ, $D C$. On primrose.
5. Soldanellæ, Horisc. On Soldanella alpina.
6. Pedicularis, Loboschutz (no. 254). On Pedicularis.
7. Menthæ, $D C$. On inints.
8. Asperifolii, P. (no. 255). On Boraginea.
9. Tragopogonis, P. On goatsbeard.
10. Compositarum, Mart. On laisy, etc.
11. Valerianacearum, $D u b$. On V. officinalis.
12. Perielymeni, $D C$. On woodbine.
13. Bunii, DC. On earthnut.
14. Galii, P. (no.490). On Galium verom.
15.. Ranunculacearum, DC. On buttercups.
15. Calthæ, Grev. On C. palustris.
16. leucospermmm, $D C$. On wood anemone.
17. quadrifidum, $D C$. On garden anemone.
18. Thalictri, Grev. t. 4: On T. alpinum.
19. Geranii, DC. On Gerania.
20. Berberidis, P.; Grev. t. 9\%. On berberry.
21. Violæ, Schum. On violets.
22. Behenis, DC. On Silene inflata.

2t. albescens, Grev. On Adoxa moschatellina.
25. Epilobii, DC. On E. montannm, etc.
26. Grossularix, DC.; Gree. t. 62. On gooseberry.
27. crassum, P. On buckthorn.
28. Orobi, DC. On Orobus tuberosus.
29. Euphorbiæ, P. On spurge.
30. Urticee, DC. On nettles.
173. ENDOPHYLLUM, Lév.

Peridium enclosed in the leaf, bursting irregularly.

1. Sempervivi, Lév. (no.476). On houseleek.

Fan. IV.-HYPHOMYCETES.

Filamentous. Fertile threads naked, for the most part frec, especially above, or loosely compacted, simple or
branched, bearing the spores at their apices, rarely more closcly packed, so as to form a distinct common stem.

Order 17. ISARIACEI.
Threads more or less compacted, plants assuming Iymenomycctous forms.

> 174. ISARIA, Hill.

Receptacle elongated, floccose, without any distinct heads. Tips of threads only frec.

1. farmosa, Fr.; Sow. t. 308. On dead pupæ.
2. arachnophila, Ditm. (no. 117). On dead spiders.
3. brachiata, Schum. (no. 30). On dead herbaccous stems.
4. citrima, P. (no. 31). On decaying Fungi.
5. intricata, Fr. (no. 118). On decaying Fungi.
6. Fricsii, Mont. (20. 491). On dead twigs.
7. puberula, Berk. (no. 221, with a fig.). On dead flowers of dahlia.

175. ANTHINA, Fr .

Receptacle clongated, vertical, confluent with the stem, dilated above. Tips of threads only frec.

1. flammea, Fr. (no. 119). (Plate 21, fig. 3.)
A. flavo-virens and brunnea are both probably merc conditions of the mycclium of IIypoxylon coccineum, Bull.
2. CERATIUM, A and S.

Rcecptacle branchecl, cylindrical, membranous, reticulated, subgelatinous, clothed with short fertile flocci, one in the centre of each reticulation.

1. hydnoides, A. and S.; Grev. t. 168.

177. PACHNOCYBE, Berk.

Stem solid, filiform below, elavate above, dusted with the minute spores.

1. subulata, Berk. Eng. Fl. l.c. p. 333 ; Soro. t. 386. f. 5. On dead herbaceous plants.
2. grisca, B. Eng. Fl. l. c. p. 334. On dead herbaceous stems.
3. acicula, B. l. c. On dead herbaccous stcms.
4. albida, B. l. c. p. 335 . On rotten wood.

Order 18. STILBACEI.
Receptaele subglobose, often stipitate, elothed with mostly minute, diffluent, subgelatinous spores.

178. STILBUM, Tode.

Stem firm, elongated. Head nearly globose. Spores minute or elongated, involverl in gluten.

* Sten formed of interwoven flocci, more or less villous.

1. tomentosum, Schrad.; Grev. t. 281, and $\ell .3$ junior. On Trichia, etc.
2. aurantiacum, B. (no. 223). On dead clm-branchics.
3. vaporarium, B. and $B r$. (no. 493). On wood, in sloves. Scarcely indigenous.
4. fasciculatum, B. and Br. (no. 492). On decayed wood.
5. fimetarium, B. and Br. (no. 494). On dung. (Ifelotium fimetarium, P.)
6. erythrocephalum, Ditm. l.c. l. 45. On dung.

> ** Stent rigid, mostly black.
7. rigidum, P. (no.32). On decayed wood.
8. piliforme, P. (no.33). On decayed wood.
9. bicolor, P. On decayed wnorl.
10. anomalum, B. (no. 34, with a fig.). On dead twigs.
11. nigrum, B. On dead Eriophorum pubesceus. Spores subcylindric.
12. pellucidum, Schrad. On wood and dccayed Fungi.
*** Stem soft, pellucid.
13. turbinatum, Tode. On soft decayed wood.
14. vulgare, Tode. On decayed wood.

179. ATRACTIUM, $F r$.

Stem firm. Head subglobose. Spores fusiform, elongated.

1. flammeum, B. and Ravenel, M/SS. (no. 757). On bark of living willows.

180. VOLUTELLA, Tode.

Receptacle fringed or studded with long hyaline bristles. Spores diffluent, gelatinous.

1. ciliata, Tr. Psilonia rosea, Berk. in Eng. Fl. ł.c. p. 353 (no. 495). On potatoes, etc.
2. sctosa, B. Wgerita setosa, Grev. t. 268. f. 2. On wood, etc.
3. hyacinthorum, B. Psilonia lyyacinthorum, Eng. Fl. l.c. On dead bulbs.
4. Buxi, B. and B. Fusisporium Buxi, Fr. (no. 495). On box-leaves. 5. melaloma, B. and B. (no.496). On Carices.*

181. TUBERCULARIA, Tode.

Receptacle verrueæform, innate, elothed with a dense stratum of gelatinous, minute spores.

1. vulgaris, Tode ; Sow. t. 294. On twigs, as currant.

[^37]2. granulata, P. ; Grev. t. 187. On fallen branehes.
3. nigrieans, $L k$. On fallen branehes, etc.
4. persieina, Ditm. l.c. t. 49. On pustules of Licidia.

182. FUSARIUM, Lk.

Receptaele diseoid, innato-erumpent, immarginate, clothed with diffluent subgelatinous spores.

1. lateritium, Nees (no. 249). On dead twigs.
2. tremelloides, Grev. t. 10. On dead nettle-stems.
3. roseum, $L k$. On dead stems of mallows, etc.
4. MYROTHECIUM, Tode.

Receptaele at length marginate. Spores diffluent, oblong, forming a flat or slightly eonvex, dark-green stratum.

1. roridum, Tode; Grev. t. 140. On deeaying plants.

As the dise is at first eovered, this is usually associated with Trichoderma, but its affinities seem to be with Stilbacei.

184. EPICOCCUM, $L k$.

Reeeptaele subglobose, vesieular, studded with large, sometimes stipitate spores.

1. ncgleetum, Desm. (no.500). On various decaying plants.
2. Equiseti, B. (Uredo Equiseti, Eng. F'l.) The affinities of this genus are doubtful.
3. ILLOSPORIUM, Mart.

Reeeptaele obseure. Spores irregular, falling away like meal.

1. roseum, lr.; Grev. 6. 51. On the larger trec-lichens.
2. carneum, l'r. (no.497). On I'cltidea canina.
3. corallinum, Roberge; (no. 498). On Borrera tenella.
4. coceineum, Rr. (no. 499). On Pertusaria communis.
5. सGERITA, P.

Reeeptaele obseure. Spores irregular, disposed in short moniliform threads at the apices of flexuous, branehed, radiating, eompaeted peduneles.

1. eandida, P. (no. 823, with a fig.). On branehes of willow, ete.

Periola tomentosa is simply a condition of Fusisporium Solani. There is no peridium in Egerita.

Order 19. Dematiei.

Threads free, rarely eolleeted into stipitiform bundles, more or less eortieated and earbonized, as are frequently the simple or septate spores.*
187. ARTHROBOTRYUM, Cesati.

Common stem eomposed of jointed threads. Spores large, radiating so as to form a little head, dark, septate. 1. atrum, B. and Br. (no. 822, with a fig.). On dead nettles.

188. DENDRYPHIUM, $C d$.

Threads free, jointed, simple below, branehed above. Branehes and branehlets often monilioid. Spores septate, aerogenous, coneatenated.

1. comosum, TFalr. (no.520). On dend stems.

[^38]2. curtum, B. and Br. (no. 538, with a fig.). On clead nettles.
3. laxum, B. and Br. (ro. 539, with a fig.). On Inula viscosa.
4. griseum, B. and Br. (no. 540, with a fig.). On nettle-stems, Currey. Aberrant.
5. fumosum, B. (Dactylium fumosum, Cd.). On dead Umbelliferce.
189. PERICONIA, Cd.

Stem eomposed of fascieulate, eompaeted threads. Head globose. Spores fixed to the free apiees of the threads.

1. glaucoccphala, Cd . (no. 495). On decaying linen.
2. calicioides, B. Sporocybe calicioides, 7 fr. On dead herbaccous stems.
3. SPOROCYBE, $F r$.

Flocei septate, free. Heads globose, studded with spores.

1. byssoides, $F r$. On dead herbaceous stems, ctc.
2. migrclla, B. (no.227, with a fiy.). On dead grass.
3. alternata, B. (no. 227*, 126, with a fig.). On damp paper.

191. STACHYBOTRYS, Cd.

Floeci septate, free. Branehes bearing short, vertieillate ramuli at their apiees, forming a little head, and eaeh terminated by a spore.

1. atra, Cd . (no. 817). On damp mill-board.
2. lobulata, B. (no. 228, with a fig.). On damp lincu.
3. HAPLOGRAPHIUM, B. and $B r$.

Flocci septate, frce, blaek. Spores eoncatenate, hyaline.

1. delicatum, B. and Br. (no. 818). On dead stumps.

193. MONOTOSPORA, Cd.

Flocei scptate, free, black, bearing one or rarely two (by division) large, blaek, subglobose spores at their apex.

1. megalospora, B. and $B r$. (no. 759 , with a fig.). On bark of yew.
2. sphærocephala, B. and Br. (no. 819, with a fig.). On deald stumps.

194. CEPHALOTRICHUM, $L k$.

Flocei free, septate, branehed at the apex, aud forming there a little glohose tuft of hairs, on whieh are seated the spherieal spores.

1. curtum, B. (no. 222, with a fig.). On dead Carices.

195. CEDEMIUM, $F i$.

Floeei free, dark, flexuous. Spores seated on sporaugiiform bodies towards their base.

1. atrum, 17 . (20.501). On fallen branches.

196. HELMINTHOSPORIUM, $L k$.

Flocei irrcgular, simpte or slightly branehed, bearing here and there multiseptate spores.

1. Smithii, B. and Br. (no. 507, with a fig.). On holly.
2. folliculatum, Cd . (no. 231). On dead wood.
3. maerocarpum, Grev. t. 148. f. 1. On fallen sticks.
4. subulatum, Nees. On oak-branehes.
5. velutinum, Lle.; Grev. i. 148. f. 2. On rotten sticks.
6. fusisporium, B. Eng. Fl. l. c. p. 336. On rotten sticks.
7. nanum, Nees. On dead herbaceous plants.
8. simplex, Kze. On rotten branehcs.
9. Tilix, I'r. (no. 230). On lime.
10. Roussclianuin, Monl. (no. 509). With Sporoschisma mirabile.
11. turbinatum, B. and Br. (no. 508, with a fig.). On dead wood.
12. obovatum, B. (no. 232, with a fiy.). On dead wood.
13. delicatulum, B. (no. 233, with a fig.). On dead wood.
14. sticticum, B. and Br. (no. 758, with a fiy.). On dead grasses.
15. Clavariarum, Desm. (no. 123). On Clavaria.
16. MACROSPORIUM, Fr.

Flocci obscure or delicate. Spores crect, basal, pcdicellatc, with at length transverse and vertical septa.

1. Cheiranthi, Ir. On damp paper, decaying plants, ctc.
2. sarciuula, B. (no. 125, with a fig.). On decaying gourds.
3. concinnum, B. (no. 235, with a fig.). On old willow-twigs.
4. Brassicæ, B. Eng. Fl. l.c. p. 339. On dead cabbage-lcaves.

198. TRIPOSPORIUM, Cd .

Flocci crect, jointed, bearing at their apices tri-radiate, articulated sporcs.

1. elegans, $C d$. (no. 509). On dccorticated oak.
2. HELICOMA, Cd.

Flocci crect, dark, jointed, bearing on their sides palc, flat, spiral sporcs.

1. Mulleri, Cd. (no. 510). On dead wood.

200. CLADOTRICHUM, $C d$.

Flocci ercet, thick, branched. Upper joints cup-shaped or inflated. Spores large, septatc.

1. triseptatum, B. and Br. (no. 511, with a fig.). On old stumps.

201. POLYTHRINCIUM, Kze.

Flocci moniliform. Sporcs springing from the midst of the flocci, didymous.

1. trifolii, Kze.; Grev. t. 216. On living clover-leaves.

202. CLADOSPORIUM, Lk.

Floeci flexuous, more or less branehed, jointed, flexible. Spores short, at longth uniseptate, springing from the sides or terminal.

1. herbarum, $L k$. On all kinds of deenying matter.
2. dendriticum, Walr. (no. 512). On pear-leaves.*
β. orbieulatum, Desm. (no.513). On leaves of Pyracantha. A variety of the last.
3. depressum, B. and Br. (no. 514, roilh fig.). On leaves of Angelica sylvestris.
4. braehomium, B. and Br. (no. 515). On leaves of Fumaria officinalis.
5. lignicolum, Cd. (no.516). On dead wood.
6. nodulosum, Cd. (n0.517). On dead herbaceous stems.

Clad. fumago is not a distinet species, but consists of C. herbarum mixed up with speeies of several other genera.

203. ARTHRINIUM, Kze. \dagger

Flocei creet, scptate, dark, and slightly thickened at the septa. Spores straight, swollen in the middle, and pointed at cither extremity (fusiform).

1. sporophleum, Kze. (no. 519). On Carices.

204. GONATOSPORIUM, Cd.

Floeei ereet, septate, thickened at the septa. Spores irre-

* Actinonema Cratagi is merely a form of this specics.
\dagger The threads in this and the two following genera are carbonized only at the joints.
gularly biconical, and in consequence somewhat angular, attached in whorls.

1. puecinioides, Cd. (no. 236, 519). Torula Eriophori, B. in Eng. Fl. On Carices and Eriophorum.
2. CAMPTOUM, $L k$.

Flocci crect, septate, thickencd at the septa, and black. Spores curved, dark, fixed in clusters at the apiccs.

1. curvatum, $L k$. (no, 518). On Scirpus sylvaticus.

206. SPORODUM, $C d$.

Flocci crect, scptate. Threads of inarticulate spores moniliform, seated towards their base.

1. conopleoides, $C d$. (no. 543). On dead grasses.

Order 20. huCEDINES.
Threads never coated with a distinet membranc, mostly white or colourcd, more rarely dingy.*

207. ASPERGILLUS, Mich.

Threads ercet, articulate, crowned with a globosc head, producing necklaccs of spores.

1. glancus, $L k$. On various decaying substanees.
2. dubius, Cd . (no. 520). On rabbits'-dung.
3. candidus, L lk. On various deciying substances.

[^39]4. roseus, $L k$. On damp paper, earpets, ete.
5. mollis, B. ; Eng. Fl. l.c. p. 340. On dead leaves.
6. virens, Lk. On Agaries.
208. NEMATOGONUM, Desm.

Threads clavate at the apices, and bearing neeklaces of spores on distinct scattered spicules.

1. aurantiacum, Desm. (no. 237, with a fig.). On bark, etc.
2. aureum, B. Aspergillus aureus, B. in Eng. Fl. On bark.

209. RHINOTRICHUM, $C d$.

Threads ercet, articulate, elavate above, and bearing spores attaehcd to spicules.

1. Bloxami, B. and Br. (no. 541, with a fig.). On dead wood.
2. Thwaitesii, B. and Br. (no. 542, with a fig.). On the naked ground.
3. Opuntia, B. and Br. (no. 761, with a fig.).

210. BOTRYTIS, Mich.

Threads scptate, irregularly or diehotomously branehed, hyaline or eoloured. Spores terminal.

1. Tilletii, Desm. (no. 529). On leaves, naked soil, etc.
2. eitrina, B. (no. 27, with a fig.). On dead twigs.
3. Jonesii, B. and Br. (no. 760, with a fig.). On dung.
4. terrestris, P. (no. 240) ; Grev. t. 257 . On the naked ground.

211. PERONOSPORA, Cd.,* Casp.

Parasitie threads mostly inartieulate. Spores of two kinds :

[^40]1, on the tips of the branchlct; 2, large, globose, on the crecping spawn. (Artotrogus, Mont.)

1. parasitica, Cd.; Soro, t. 400. f. 7. On Cruciferce.
2. destructor, Casp. (no. 239, with a fig.). On leaves of onions.
3. infestans, Casp. (no. 521). On potatoes, producing the well-known potato murrain.
4. ganglioniformis, Cusp. (no. 526). On lettuces.
5. arborescens, Casp. (no. 525). On poppy.
6. Viciæ, Casp. (no. 524). On peas, tares, etc.
7. Urticæ, Casp. (no. 522). On nettles.
8. Arenarix, Casp. (no. 523). On Arenaria trinervis.
9. macrospora, Casp. (no. 527). Botrytis crustosa, Fr. On Umbellifers.
10. grisea, Unger (no. 528). On Veronica Beccabunya.
11. effusa, Casp. On spinach.
12. violacea, B. On petals of Scabiosa arvensis.
13. curta, Casp. (no. 128, with a fig.). On anemone.

212. VERTICILLIUM, Lk.

Flocci septate, hyaline or coloured. Branches verticillate. Sporcs apical.

1. apicale, B. and $B r$. (no. 531, with a . $/ g$.). On fallen oak-branches.
2. nanum, B. and $B r$. (no. 532 , with a fig.). On pears.
3. epimyces, B. and Br. (no. 533, with a fig.). On Elaphomyces.
4. distans, B. and Br. (no. 534 , with a fig.). On dead herbaceous stems.
V. lateritium appears to be only a condition of Acrostalaymus.

213. HAPLARIA, $L k$.

Flocei simple or forked, jointed. Spores seattered over the tips of the threads.

1. grisen, Lk. On decaying herbs.

214. POLYACTIS, $L k$.

Flocci scptate, brownish, branched above. Spores hyalinc, in terminal clusters.

1. vulgaris, Lk. On decayed herbs.
2. eana, B. On decayed herbs.
3. vera, B. On deeayed herbs.
4. cincrea, B. On deeayed herbs.
5. fascieulata, $C d$. On deeayed vegetables.

215. PENICILLIUM, $L k$.

Flocci divided above in a fasciculate manner septate, as well as the branchlets, which are terminated by necklaces of spores, collected into tassel-like heads.

1. erustaeeum, F. On all kinds of deeaying substanees.
2. sparsum, Grev. t. 58. f. 2. On stalks of plants.
β. coremium, Grev. t. 301. On fruit, gum, ete.
3. bieolor, Ir. On decaying substanees.
4. eandidum, I. On various deeaying substanees.
5. roseum, $L k$. (no. 535). On box, ete.
6. subtile, B. (no. 241, with a fig.). Inside of deenyed willow.
P. fasciculatum (no. 129) is omitted as uncertain.

216. OIDIUM, $L k$.

Flocci very short, producing a moniliform string of spores by tomiparous division.

1. ehartarum, Lk. (no. 130). On damp paper.
2. aureum, $L k$. On dead wood, ete.
3. fulvum, $L k$. On dead wood.
4. fruetigenum, Schrad. On deenyed fruit.
5. faseieulatum, B. On deeayed oranges.
6. Porriginis, Mont. (no. 546). On Porrigo Lupinosa.
7. favorum, B. and Br. (no. 762, with a fig.). On honcycomb.
S. æquivocum, B. and Br. (no. S21). On Polyporus Schweinitzii.*
8. concentricum, B. and Br. (no. 547). Cylindrosporium, Unger. On nettles, ground ivy, etc.
9. abortifaciens, B. (Ergotctia, Quekett). On plants infested with Ergot. Possibly a conidiiferous condition of Cordiceps purpurea, etc.

217. MONILIA, Hill.

Flocci crect, jointed; head none; bearing fasciculate nceklaces of spores at their apices.

1. fasciculata, Cd . ; Grev. t. 32. On dead grass.
2. racemosa, Purt ; Bolt. l. 132. f. 2. On decaying substances.

218. DACTYLIUM, Nees.

Flocei ercet, jointed, branched, bearing at the tips of the branehlets, either scattered or in tufts, septate spores.

1. pyriferum, $F r$. On decayed herbaceous stcms.
2. tenellum, Fr. (no.536). On moss.
3. macrosporum, $F r$. On dead leaves, etc.
4. spherocephalum, B. (no. 243, with a fig.). On dead ivy.
5. dendroides, Tr.; Grev. t. 126. f. 1. On Agaricini.
6. obovatum, B. (no. 242, with a fig.). On willow-twigs.
7. roscum, B. Tricothccium roseum, Fr. On decaying plants.
8. tenuissimum, B. (no. 537). On potatoes. Perhaps only a state of Fusarium Solani-tuberosi.

219. FUSIDIUM, $L k$.

Flocci coloured, very delicate, cvancsecnt. Spores straight, filiform.

[^41]1. griseum, Ll.; Grev. t. 102.f. 1. On dead leaves.
2. flavo-virens, T.; Grev. t. 102. f. 2. On dead leaves, ete.
3. album, Desm. (no. 248). On dry but green oak-leares.

220. SPOROTRICHUM, Lk.*

Flocci ascending, tufted, scptate. Spores simple, scattered, at first conccaled.

1. ehlorinum, Lk. On dead leaves.
2. amrantiacum, Grev. On dung.
3. sulphurcum, Grev. l. 108. f. 2. On eorks, ete., in ecllars.
4. laxum, Grev. l. 108. f. 1. On various decaying substanees.
S. geochroum is the conidiifcrous state of some Hypoxylon.
5. inosculans, B. in Lingl. Fl. l. c. p. 346. On Thelephora.
6. fenestrale, Ditm. l.c. t. l. On dirty glass.

221. ZYGODESMUS, Cd.

Flocci short, crect, springing from the crecping stcrile threads ; joints here and there cut halfway through.

1. fuscins, C'd. On deeayed wood.

222. VIRGARIA, Nees.

Flocci crect, dichotomous, virgate, black, scptatc. Sporcs minute, scattered over the branches.

1. nigra, Tr.; Grev. t. 274. On fallen branches.

223. BOLACOTRICHA, B. and Br.

Flocci unbranched, jointed, curled at the top. Spores

[^42]large, globose, shortly pedicellate, conglomerated towards their basc.

1. grisea, B. and $B r$. (no. 506, with a fig.). On dead cabbage-stalks.

2:4. MYXOTRICHUM, Kze.

Flocci branched, bearing towards their base little conglomerated masses of spores.

1. chartarum, Kze. (no. 121). On damp straw.
2. deflexum, B. (no. 122, with a fig.). On damp paper and wood.

225. GONYTRICHUM, Nees.

Flocci branched, here and there bearing knots, from which spring the verticillate, fertile, septatc threads, crowned at their tips with a globose mass of spores.

1. cæsium, Nees; Cd. Ic. ii. f. 51. On fallen brauches, in woods.

226. MENISPORA, P.

Floeci ereet, jointed. Spores heterogeneous, acrogenous, fusiform or cylindrical, simple, at first joincd together in bundles, then irregularly scattered over the flocci.

1. lucida, Cd. Ic. i. f. 223 (no. 533). On decayed wood.
2. CH \nless TOPSIS, Grev.

Floeci crect, jointed, subulatc, below branched and verticillate, above simple and flagelliform. Spores cylindrical, springing from the tips of the branchlets.

1. Wauchii, Grev. t. 236. On decayed wood.

228. ACREMONIUM, $L k$.

Floeci creeping, jointed, beset with short patent branehes, each of which bears a sporc.

1. verticillatum, Lk.; Grev. t. 124.f. 2. On dead wood.
2. altcrnatum, $L k$. On dead leaves.
3. fuscum, Schm.; Grev.t. 124.f. 1. On dead wood.

229. GONATOBOTRYS, Cd.

Threads erect, jointed ; articulations swollen in the middle, and bearing obovate spores on little spiculcs.

1. simplex, Cd. Pracht. t. 5. On fruit of Tamnus niger.

$$
\text { 230. CLONOSTACHYS, } C d \text {. }
$$

Flocci jointed abovc. Branches and branchlets quatcrnate, subcapitatc, clothed with spores, forming distinct spikes.

1. Araucaria, Cd.; Curr. Nic. Journ. v. p. 126. On dead bark.

231. BOTRYOSPORIUM, Cd.

Flocci slightly branched, bearing patent branchlets, each of which is surmounted by a few spicules bearing a head of spores.

1. pulchrum, Cd. Pracht. t. 15. On decaying herbs.
2. diffisum, $C d$.; Grev. t. 126.f.2. On decaying herbs.

232. PAPULASPORA, Preuss.

Flocci decumbent, jointed, producing short erect branches, each of which produces a cellular head studded with crect spores, the endochrome of which is bipartite or quadripartite.

1. sepedonioides, Preuss. (no. 761*). On rice paste.
2. RHOPALOMYCES, Cd .

Flocci frce, septate, swelling at the tip into an arcolate
head, each cell of which bears a spicule, surmounted by a spore.

1. pallidus, B. and Br. (no. 504, with a fig.). On Russian matting. 2. candidus, B. and Br. (no. 505, with a fig.). On decayed hops.

Order 21. SEPEDONIET.

Mycelium floccose. Fertile flocei obseure, and in consequence the spores rest upon the matrix.*

234. SEPEDONIUM, $L k$.

Spores large, simple and globose, or appendiculate.

1. chrysospermum, Lk.; Grev. t. 198. On Boleti.
2. roseum, Fr. (no. 132). On Agaricus vellereus, etc.

235. FUSISPORIUM, $L k$.

Spores elongated, fusiform, curved, at length septate, forming a gelatinous mass.

1. Betæ, Desm. (no. 246). On bcet-root.
2. Georginæ, Berk. On tubers of dahlia.
3. udum, B. (no. 245, with a fig.). On trees, in spring.
4. roscolum, Stephl. (no. 549). On dccayed potatoes.
5. fœni, B. and Br. (no. 550). On hay.
6. bacilligerum, B. and Br. (no.548). On leaves of Alatermus.
7. atro-virens, B. in Eing. Fl. l. c. p. 351. On onions.
8. aurantiacum, L / k. On decaycd gourds, ctc.
9. insidiosum, B. in Gard. Chr. 1860. On Agrostis pulchella.

This species has threads very like those of Egerita.

* The spores are the principal clement in this Order, which approaches Coniomycetes.

10. Solani-tuberosi, Mart. On deeaying potatoes.

This is Periola tomentosa, Fr., or at least the perfect eondition of it. As in the last, the flocei are too much developer to be consistent with the characters of the Order.

236. EPOCHNIUM, $L k$,

Sterile flocei ereeping, fertile obsolete. Sporcs septate, attached apparently to the matrix.

1. maerosporoideum, B. (no. 131, with a fig.). On dead Ribes.
2. PSILONIA, $F r$.

Flocei persistent, joincd into an erumpent mass, at first eovering the simple spores.

1. nivea, $7 r$. (no. 822). On becelh-trunks.
2. gilva, $F r$. On dead herbaceous stems.
3. Arundinis, Desm. (no. 35 and 551). On doad leaves and stems of reeds.

Order 22. Trichodermacei.
Floeei covering the spores, and forming a kind of peridium, which at length vanishes in the centre.
238. PILACRE, Fr.

Stem solid, eylindrical. Head globose, composed of flexuous, branched, radiating threads. Spores produced near the tips, forming a dusty mass.

1. faginea, B. and $B r$. (no. 350, with a fig.). On beeel-sticks.
2. Petersii, B. and Curt. (no. 824). On hornbeam. Smell like that of

Hypericun Androscmuum.

239. INSTITALE, Fr .

Stem none ; eommon mass eoutaining many eavities filled with spores.

1. effusa, F_{r}. $(n 0.756)$. At roots of Scotch fir.
I. acariformis is merely a state of Hypoxylon coccineum, and I. radiata of Coprinus radiatus.

$$
\text { 240. TRICHODERMA, } P \text {. }
$$

Peridium spurious, indeterminate, roundish, composed of interwoven even flocei, at length vanishing in the centre. Spores spread over the dise.

1. viride, P.; Grev. t. 271. On dead wood, etc. Probably not autonomous.

241. ARTHRODERMA, Curr.

Peridium spurious, indeterminate, roundish, composed of interwoven, strongly eonstrieted, jointed floeci. Spores colleeted in the eentre.

1. Curreyi, B.; Micr. Journ. ii. p. 240. On dead leaves and sticks.

Reasons have been given above for not plaeing Myxothecium here. Myxormia has too compact an exeipulum to be placed with Myxothecium, or in this plaec.

Fam. V.-ASCOMYCETES.

Fruit eonsisting of sporidia, mostly definite, contained in asei, springing from a naked or enclosed stratum of fruetifying eells, and forming an hymenium or nueleus.

Order 23. ELTELLACEI.

Hymenium at length more or less exposed. Substance soft.

242. MORCHELLA, Dill.

Receptacle elavate or pileate, impervious in the eentre, stipitate, covered with the hymonium, whieh is deeply folded and pitted.

1. M. esculenta, P.; pileus ovate, adnate at the base ; ribs firm, anastomosing, and forming deep pits; stem even. (Plate 21, fig. 5.)-Grev. t. 68; Huss. i. t. 13.

In woods, gardens, ete. Eseulent. Varying much in breadth and height, sometimes conical (no.553), sometimes almost eylindrical.
2. M. patula, P. ; pilens obtuse, free halfway up; pits rhomboid; stem even.-Sow. t. 51, in part.

In woods, ete. Rare.
3. M. semilibera, $D C$.; pileus eonical, free halfiray up; ribs longitudinal, forming oblong pits, which are veined within ; stem even.-Grev. t. 89.

Under hedges, ete. Not uneommon.

$$
\text { 243. GYROMITRA, } F r \text {. }
$$

Receptacle inflated, bullate, rough with raised gyrose ribs.

1. G. esculenta, Fr.; pileus inflated, irregular, undulated, gyroso-rugose, brown; margin united with the even villous stem: (no. 825.)

In pine-woods. Rare. Weybridge, F. Currey.

244. HELVELLA, L.

Receptaele pileate, langing down over the stem, concave and barren below. Hymenium even.

1. H. crispa, Fr.; pileus deflexed, lobed, at length free, erisped, pallid; stem fistulose, eostato-laeunose. (Plate 21, fig. 4.)-Grev. t. 143 ; Sow. $t .39$.

In rooods. Common. Eseulent.
2. H. lacunosa, Afz.; pileus inflated, lobed, einereousblaek; lobes deflexed, adnate ; stem fistulose, costato-lacu-nosc.-Grev. $t .36$.

In woods. Common. Eseulent. H. sulcata (no. 764) is, I believe, only a form of this.
3. H. elastica, Bull.; pileus free, even, inflated, at length aeutely lobed; stem elongated, slender, attenuated, pruinose. -Sow. t. 154: (no.86.)

In woods. Not uneommon. Approaehes very near to Peziza macropus.
4. H. ephippium, Lév. ; small ; pileus deflexed, lobed, deeidedly velvety beneath: ($n 0.552$.)

On the ground, in woods. Not uneommon. Seareely one ineh high.

245. VERPA, Swariz.

Receptaele clavato-pileate, hollow below and inflated, or eonical and adpressed, equally deflexed all round ; hymenium rugulose, but not eostate, or nearly even.

1. V. digitaliformis, P.; pileus eampanulate, fingershaped, rugulose, umber; stem equal, minutely squamulose transversely. (Plate 21, fig. 6.)

Under hedges. Rare. King's Cliffe. Suffolk, Skepper.
2. V. conica, Sow.; pileus eampanulate, nearly even, brown ; margin slightly sinuated, yellow beneath, as is also the equal stem.-Sow. t. 11.

On the ground. Very rare.

24.6. MITRULA, Fr .

Soft and fleshy, simple, eapitate. Stem distinct. Hymenium surrounding the inflated elub.

1. M. eueullata, Fr.; head ovate, hood-shaped, even, subferruginous; stem thread-shaped.-Grev. t. 81.

Amongst fir-leaves. Often overlooked from its small size.
2. M. paludosa, Fr.; head ovate, obtuse, inflated, even, orange ; stem pale, hollow.-Grev. t. 312 ; Huss. i. t. 9.

On leaves, in ditehes, ete. Loeal. Capel Curig, in great abundanee. Extremely pretty.

247. SPATHULARIA, P.

Dise eapitate, compressed, running down into the stem on either side.

1. S. flavida, P.; head spathulate, eompressed, even, yellow; stem whitish. (Plate 21, fig. 7.)-Grev. t. 165.

In fir-woods. Not uneommon.

248. LeOTIA, Hill.

Reeeptaele pileate, supported in the eentre by the stem; margin revolute, covered everywhere with the smooth, somewhat viseid hymenium.

1. L. lubriea, P.; tremelloid; pileus swollen, waved or slightly lobed, yellow-green ; stem hollow, nearly equal, yellow. (Plate 22, fig. 1.)—Grev. t. 56.

In woods. Common. L. infundibuliformis is merely some Agarie attaeked by an Hypocrea.
2. L. nana, $F r$.; small ; pileus lobed, rugose, white, even
beneath and brown; stem stuffed, cylindrical, white.-With. iv. $p .296$.

Amongst moss. Pendarvis. Not observed since the time of Withering.

249. VIBRISSEA, $F r$.

Receptacle capitate, supported in the centre by the stem, covered above with the hymenium. Margin adnate to the stem. Asci and filiform sporidia bursting forth, and rendering the hymenium velvety.

1. V. truncorum, Fr .; simple; head orbicular, goldenyellow ; stem cylindrical, glaucous, turning black: (no. 305.)

On wood, in water. Rarc. Llyn Howel, Rev. T. Salwey. Scottish Highlands.

250. GEOGLOSSUM, P.

Receptacle clavate, simple, confluent with the stem. Hymenium surrounding the club.

* Stem distinct.

1. G. viride, $P . ;$ vcrdigris-green; stem squamulosc.Grev. t. 211.

In woods. Not cominon.
2. G. olivaceum, $P_{\text {, }}$; smooth, dry, dingy-olive ; club compressed, distinct: (no. 765.) b. Dingy-purplc. (Plate 21, fig. 3.)

On lawns. Not common. Bath. Cocd Coch. The plant figured agrees witl Persoon's plate in form aud general character, but is rather dingy-purple than olive. G. atro-purpureum has a more distinct head, and has a sealy stem. Mr. Broome's plant differs slightly in colour from minc, and is nearer to G. viride.
3. G. glutinosum, P. ; smooth, viseid, at length blackish ; stem distinet, glutinous, even.

Grassy places. Rare. Appin, Capt. Carmichael.
4. G. glabrum, P.; smooth, dry, at length black; stem squamulose.

Grassy places. Not eommon.

> ** Stem confluent.
5. G. hirsutum, P. ; black, hairy. (Plate 22, fig. 2.)

Amongst grass. Common.
6. G. difforme, F. ; black, smooth, dry ; head confluent with the stem.

Amongst grass. Common.
251. PEZIZA, L.

Cup-shaped; eup more or less eoneave, soon open. Dise naked. Asei fixed.

Scrics 1. Aleuria, Fr.-Fleshy, or between fleshy and membranaccous, externally pruinose or floccoso-furfuraceous. Mostly growing on the ground.

Subgenus 1. Drscina, Fr.-Cup always open, or comnivent when young. Veil superficial.

1. P. (Diseina) acetabulum, L.; eyathiform, dingy, adorned externally with ribs, whieh run up from the short lacunose stem.-Sow. t. 59.

On the ground, in spring. Not eommon. Very elegant.
2. P. (Discina) venosa, P.; sessile, more or less twisted, dark umber-brown, white beneath; dise eoarsely wrinkled. (Plate 22, fig. 6.)—Grev. t. 156; Huss. ii. t. 7.

On the ground, in spring. Not uneommon. A eurious form is represented in the Plate.
3. P. (Discina) badia, P.; nearly sessile, entire, flexuous, brown; margin at first involute, paler, and inelining to olive, exterually pruinose. (Plate 22, fig. 4.) -Huss. ii. t. 13.

Margins of ponds, ete. Summer. Very variable in eolour.
4. P. (Discina) leporina, Batsch; somewhat stipitate, elongated at one side, car-shaped, subferruginous, externally mealy ; hymenium and base mostly even.

On the ground, in woods. Not common. Sometimes einereous or yellowish.
5. P. (Discina) onotica, P. ; somewhat stipitate, elongated at one side, ear-shaped, mealy externally, rose-coloured or orange within, and at length rugose.-Sow. t. 79.

On the ground, in woods. Rare. Coed Coch. Very beautiful.
6. P. (Discina) aurantia, Fr.; nearly sessile, irregular, oblique, orange, whitish externally and somewhat pruinose.Sow. t. 78 ; Huss. i. t. 37.

On the ground, in woods, generally near old stumps. Common. Sporidia rough.
7. P. (Discina) cochleata, Huds. ; sessile, exspitose, large, twisted, umber, externally pruinose.-Sow. $t .5$.

Amongst grass. Not common.
8. P. (Discina) succosa, B. ; eup ncarly regular, entire, palc waxy-brown, externally white and pruinose ; juice brightyellow: (no. 156, with fiy.)

On the ground, in gardens. Northamptonshire.
9. P. (Discina) repanda, Wuhl.; large, incised, waved, brown, and somewhat wrinkled within, whitish and mealy without; base clongated, rooting.-Grev. $t .59$.

On the ground and on stumps. Not eommon. Variable in size.
10. P. (Diseina) eerea, Sow.; large, infundibuliform, waved,
yellowish, externally dirty-white, as well as the villous, stemlike base.-Sow. t. 3.

On tan-beds, ctc. Very rare.
11. P. (Discina) vesieulosa, Bull.; large, entire, sessile, at first globose, inclining to top-shaped, eonnivent, then campanulate; mouth subcrenate, pallid-brown, externally furfura-ecous.-Grev.t. 107 ; Sow. t. 4.

On clunghills and hotbeds, extremely eommon. Bolt. t. 175 is probably this speeies.
12. P. (Discina) micropus, P.; middle-sized, oblique, pallid, squamulose, furfuraeeous externally; base stem-like. (Plate 22, fig. 5.)

On beceh-stumps. Very rarc. Fineshade, Northamptonshire.
13. P. (Discina) pustulata, $P_{.}$; sessile, subglobose, pallid, somewhat dingy, furfuraceous, and dirty-white externally ; margin entire.-Hedw. Musc. Fr. ii. t. 6 A: (no. 307.)

On the gromnd. Very rare.
14. P. (Diseina) radula, B. and Br.; large, eup-shaper, sessile, at length depressed, externally blaek, rough with nearly equal warts, within vinous-brown ; sporidia globose, tuberculate.-Ann. of Nat. Hist. xviii. p. 77.

On the ground, in woods. Tery rare. Bristol. Analogous to Genea verrucosa.
15. P. (Diseina) viridaria, B. and Br.; middle-sized ; myeelium floecose, expanded, white; eups at first globose, then hemispherieal, at length expanded, watery-grey, externally rough with brown furfuraeeous particles: (no. 555.)

On damp walls and water-butts. Rare. King's Cliffe.
16. P. (Discina) luteo-nitens, B. and $B r$.; crowded, brightyellow ; eups eoneave, nearly regular, at length flexuous: (no. 556.$)$

On the bare ground. Rare. King's Cliffe. At first sight apparently a variety of P. aurantiu, but the sporidia are not rough.

Subgenus 2. Geoprixs, Fr.-Veil innate. Cup when young subglobose, closed, then open and orbicular. Substance fleshy, rarely fibrous.
17. P. (Geopyxis) macropus, P.; cup hemispherical, einereous, hirto-verrueose; dise mouse-eoloured, turning pale; stem very long, attenuated.-Grev. t. 70.

On the ground, in woods. Common.
18. P. (Geopyxis) tuberosa, Bull.; thin; eup funnelshaped, bright brown, turuing pale; stem elongated, springing from an irregular black tuber.-Sow. $t .63$; Huss. ii. t. 10.

On the ground, in woods. Spring. Not uneommon. Tuber exaetly resembling some Sclerotium.
19. P. (Geopyxis) Rapulum, Bull.; thin, yellow-brown; enp funnel-shaped, nearly smooth; stem twisted ; root elongated, fibrillose.-Bull. t. 485. f. 2.

On the ground. Observed only by Diekson.
20. P. (Geopyxis) cupularis, L. ; nearly sessile, thin, glo-boso-eampanulate, fawn-eoloured or pallid, mealy externally ; margin erenate: (no. 308.)

On the ground, in gardens, ete. Not common. Sometimes yellowish.
21. P. (Geopyxis) sepulta, Fr.; hypogæous, globose, elothed with dense woolly fibres; hymenium at length exposed by rupture of the upper portion: (no. 766.)

On the ground. East Bergholt. A coarse, unsightly speeies.
22. P. (Geopyxis) Cornubiensis, B. and $B r$.; middle-sized, sessile, fixed by down; margin alone free, somewhat flat-
tened, minutely villous externally; hymenium orange ; sporidia oblong, rather rough.

On manured ground. Penzance.
23. P. (Geopyxis) saniosa, Schrad.; sessile, eoneave, milky, brown-purple externally, pulverulent, umber: (no. 87, with a fig.)

On the ground, overrme with Thelephora sebacea. King's Cliffe.
24. P. (Geopyxis) argillacea, Sow.; sessile, white, at length yellowish, even, at first ureeolate, at length split and torn, rooting at the base, and hairy.-Sow. t. 148.

On modelling-elay. Observed only by Sowerby.
25. P. (Geopyxis) granulata, Bull.; sessile, minute, nearly plane, orange-red, externally granulated with papillæ.

On eow-ding. Very common. Quite destitute of bristles. .
Subgenus 3. Humaria, $m r$.- Teil thin, submarginal, floceulose, fugaeious. Cup sessile, entire, hemispherieal, flattened. Colour bright. Terrestrial.
26. rutilans, $F r$. On soil.
27. melaloma, A. aud S. (no. 88). On elareoal.
28. ereeta, Sow. t. 369. f. 10, 11. On shaded ground.
29. Polytrielii, Schum. (no. 768, with a fig.). On heaths.
30. leneoloma, Reb. (no. 768). On the ground.
31. humosa, $F i$. (no. 768). On the ground.
32. glumarum, Desm. (no. 768). On ehaff, rotting on the ground.
33. omphalodes, Bull. Thelephora earbonaria, Bertero. On burnt soil.

Subgenus 4. Enccelia, Fr.
34. faseieularis, A. and S.; Sow. t. 425.f. 1, 2. On brauehes, bursting through the bark.
35. furfuraeea, Fr . (no. 157). On alder-braneles.

Series 2. Lachnea, Fr.-Veil disinct, decidedly villous, or pilose, persistent. Cup in consequence bristly or hairy, always closed when young. Substance waxy, firm, rarely fleshy.

Subgenus 4. Sarcoseyphi, Fr.-Fleshy. Veil villous.
36. P. (Sarcoscypha) coccinea, Jacq.; eup funnel-shaped, whitish externally, and elothed with short adpressed down; dise searlet.-Huss. i. t. 44; Grev.t. 171.

On stieks. Spring. Local. Extremely beautiful. A enrious variety has been sent by Lady Orde from Kilmory, orange externally, quite smooth, and nearly sessile.
37. P. (Sarcoscypha) melastoma, Sow. ; cup fleshy ; dise urecolate, black, elothed externally with red flocei; stem short, attaehed by dense strigose hairs.-Sow. t. 149 ; Grev. t. 315.

On stieks lying on the ground. Rare.
38. P. (Sarcoseypha) radiculata, Sow.; suberspitose, floshy, sessile, hemispherieal, then flattened; dise sulphureoloured, externally white, villous, as well as the thiek root.Sow. t. 124.

On the ground. Very rare.
39. P. (Sarcoscypha) hemispherica, Wigg; sessile, hemispherieal, waxy, externally brownish, thiekly eovered with fascieulate hairs; dise white, with a glaueous tinge.-Sow. t. 147.

On the ground. Common.
40. P. (Sarcoscypha) brunnea, A. and S.; sessile, hemi-spherieo-depressed, subflexuous, brown, rough externally with short faseienlate hairs: (no. 309.)

On the ground. Not eommon. 41. hirta, Schum. (no. 768). On the ground. Not uncommon.
42. trechispora, B. and Bri.; Ann. Nat. Hist. xviii. p. 77. On the ground, in woods. Common. Scarcely to be distinguished from the last without the microscope.
43. vitellina, P. On the ground. Very rare.
4.4. scutcllata, L.; Sow. t. 24. On stumps of trees. Common.
45. cærulea, Bolt. t. 108. f. 2. On trunks of firs.
46. livida, Schum. (no. 558). On chips.
47. stcreorea, P.; Sow. t. 352. On cow-dung.
48. albo-spadicea, Grev. On the ground.

Subgenus 6. Dasyscypha, Fr.-Cup thin, waxy, dry. Dise smooth, extcrnally pilose or villous. Hymenium thin. Substance subfloceose.
49. ciliaris, Schrad. (no. 559). On dead leaves.
50. virginea, Batsch. On stumps, twigs, ete.
51. nivea, Fr. On stumps, etc.
52. calycina, Sclum. On twigs and bark of conifers.
53. bicolor, Bull. On dead twigs.
54. cerinea, P. On old rails, brameles, etc.
55. claudestina, Bull. On dead bramble.
56. caulicola, Fr. (no. 310). On dead herbaceous stems.
57. acuum, Fr. On dead pinc-leaves. Scotland, Jerdon.
58. allo-violaseens, A. and S. On lilac, ete.*
59. corticalis, P. (no. 311, 562). On dead bark.
60. tricolor, Sow. t. 369.f. 6. On bark.
61. Godroniana, Mont. Syll. p. 185. On bark.
62. melaxantha, $F r$. On fallen branches.
63. hispidula, Schrad. On dead wood.
64. Schumacheri, Fr.; Grev.t. 11. On dead wood.
65. rufo-divacea, A. and S. t. 11. f. 4. Ou dead bramble.
66. variccolor, Fr.; Sow. t. 178. On rotten wood.
67. cpisphæria, Mart. On Hypoxylon mutliforme.

* Mr. Jerdon finds a plant very elosely resembling this on Ulex, with the fruit of a Cyphella. It is probably a sporiferous eondition.

68. Pineti, Batsch. On fir-cones.
69. papillaris, Bull.; Sow. t. 177. On dead wood.
70. hyalina, P. On stumps of trees.
71. sulphurea, P.; Grev. t. 83. On dead nettles, etc.
72. plano-umbilicata, Grev. On dead nettles.
73. villosa, P. On large dead Herbacea, as burdock.
74. Grevillei, B. Engl. Fl. l. c. p. 198. On dead Umbelliferra.
75. Bcrkeleii, Blox. (no. 770). On dead Umbelliferce.
76. aspidiicola, B. and Br. (no.771). On Filix-mas.
i7. albo-testacea, Desm. On dead grass-leaves.
77. apala, B. and Br. (nо. 561). On dead rushes.
78. Clavariarum, Desmi.(no. 563). On decaying Clavarice.
79. straminum, B. and Br. (no. 561). On whent, ctc.*

Subgenus 7. Tapesia, Fr.-Cups waxy or subcoriaceous, crowded into a sort of crust-like stratum, or sitting on a tomentose subiculum.
81. anomala, P. On rails, etc.
82. aurelia, P.; Grev. t. 139. On dead leaves, etc.
83. domestica, Soro.t. 351. On whitewashed walls.
84. Piggotii, B. and Br: (no. 769). On plaster ceilings.
85. cæsia, P. On chips.
86. Chavetiæ, Lib. (no. 565). On chips.
87. eriobasis, B. (no. 312). On dead bark.
88. Bloxami, B. and Br. (no. 566). On chips, ctc.
89. mutabilis, B. and Br. (no. 564). On Aira caspitosa.
90. Rosæ, P. (no. 10). On rose, sycamore, etc.
91. fusca, P.; (irev. t. 192. On branclics of various trees.
92. Johnstoni, B. (no. 313). On fallen branches.
93. sanguinea, P. (no. 11). On fir.

[^43]Subgenus 8. Fibrins, Fr.-Waxy or subcoriaeeous, dry, at length smooth, at first marked with adpressed hairs. Margin torn or toothed.
94. rudis, B. (no. 574). On shallow gravel and peat.
95. bolaris, Batsch ; Sovo. t. 369. f. 5. On willow.
96. siparia, B. and Br. (no.772). On eln.
97. Ledi, A. and S. t. 10.f. 7 (no. 160). On Arbutus Uva-ursi.

Series 3. Phialea, Fr.-Veil none. Cups wary or membranaceous, quite smooth (or very rarely mealy or subtomentose), soon open. Subiculum none.

Subgenus 9. Hymenoscypia, Fr-Cup submembranaceous, distinetly stipitate. Hymenium distinct, thicker than the walls of the cup.
98. firma, $P_{\text {.; }}$ Sow. t. 115. On stieks.
99. ciborioides, Fr. (no. 158). On dead leaves.
100. echinophila, Bull. t. 500. f. 11 (no.567). On ehestnut-husks.
101. coronata, Bull. t. 416.f. 4. On stalks of plants.
102. inflexa, Bolt. t. 106.f. 2; Sow. t. 306. On dead nettles.
103. strinta, Fr. (no.568). On dead stems.
104. Cacaliæ, Fr. (no. 569). On the eommon stoek.
105. nitidula, B. and Br. (no. 570). On Aira crespilosa.
106. eyathoidea, Bull.; Sow. t. 369. f. 1. On dcad hcrbaeeons stems.
107. eaneus, Reb. t. 4. f. 17 (no. 572). On fallen catkins.
108. Cnrreyi, B. ; Journ. Linn. Soc. i. p. 147. On dead Juncus.

Subgemis 10. Mollisia, Fr.-Irecly evolved, smooth. Cups turbinato-stipitate or sessile, soft aud waxy.
109. clavns, A. and S. (no. 575). On leaves, ete., in swamps.
110. vinosa, A. and S. On fallen branches.
111. atro-virens, P. On decaying wood.
112. cinerea, Batsch. On deeaying wood, ete.
113. Chailletii, P. On dead herbaceous stems.
114. sphærioides, P. (no. 577). On Lychnis dioica.
115. axillaris, Nees. On Splachnum mnioides.
116. xanthostigma, $F r$. On fir-wood.
117. leucostigma, $F r$. On soft rotten wood.
118. rulgaris, $F r$. On fallen brauches.
119. erumpens, Grev. t. 99. On sycanore-petioles.
120. atrata, P. On dead herbaccous stems.
121. cornea, B. and $B r$. (no. 578). On Carex paniculata.
122. fusarioides, B. (no.12). P. ncglecta, Lib. On dead nettlc-stcms. 123. micrometra, B. and Br. (no. 773). On dead rushes.

Subgenus 11. Patellea, Fr.-Cup sessile, at first subinnate, but scarcely erumpent, waxy but tough, flattened, open, orbicular, marginate, dry, lichenoid.
124. melanotheja, Pr. Ind. Alpht. On oak-branches.
125. compressa, A. and S. On dead wood.
126. lignyota, Fr. (no. 579). On dead wood.
127. flexella, Fr. On dead wood.
128. lecideola, Fr. On dead wood.

252. HELOTIUM, F.

Disc always open, at first punctiform, then dilated, convex or concave, naked. Excipulum waxy, free, marginate, cxternally naked.

Subgenus 1. Pelastea, Fr.-Dise convex. Receptacle hollow bencath or flattened.

1. fibuliforme, Fr.; Boll. t. 176. On elm.
2. agaricinum, B. On decayed wood.
3. selerotioides, B. On decaycd wood.
4. aciculare, l 'r. On old stmmps.
5. subtile, I^{\prime}. On dead fir-leaves.
6. æruginosum, Fr.; Sov. t. 347; Grev. t. 241. On fallen oak-branches.
7. serotinum, Fr.; Bolt. t. 98. On sticks, etc., in watery piaces.
8. virgultorum, Pr. (P. fructigena, Bull.) ; Soro. t. 117. On twigs, acorns, etc.
b. flavescens, Holmsk. t. 11. On willow.
9. lutescens, Fr. (no. 826). On pine-branches.
10. testaccum, B. (no. 576). On decaying linen.
11. conigenum, Fr. On cones of Scotch fir.
12. phascoides, Fr. On mosses.
13. acuum, $F r$. On dead fir-leaves.

Subgenus 2. Calycella, Fr.-At first turbinate. Disc concave. Stem firm when present.
14. tuba, Fr. ; Bolt. t. 106. f. 1. On fallen branches.
15. Buccina, Fr. On fallen pinc-branches.
16. calyculus, Fr.; Sovo. t. 116. On fallen branches.
17. Aspegrenii, Fr.; Sow. t. 369. f. 7. On wood.
18. citrinum, Fr.; Sow. t. 150. On old stumps.
19. pallesccus, $F r$. On old stumps.
20. lenticulare, Fr. On old stumps.
21. ocluraceum, B.; Grev. t. 5. Ou old stumps.
22. cribrosum, B. P. cribrosa, Grev. On sandy or gravelly ground.
23. claro-flavum, B. (Peziza, Grev.) On decayed wood.
24. salicellum, $F r$. (no. 573). On willow.
25. versiforme, $F r$. (no. 159). (Plate 2, fig. 6.) ' On ash-stumps.
26. subsessile, Sclum. (Pez. helotioides, $F r$.) (no. 573). On wood.
27. herbarum, Fr . On dead leaves.
28. epiphyllum, Fr. On dead leaves.
29. fagineum, $F r$. On decayed twigs, straws, etc.
30. punctatum, Fr.; Grev. t. 63. On dead oak-leaves.
31. Marchantir, Fr. (Peziza, B.) On fading M. hemispherica.
253. PSILOPEZIA, B.

Indeterminate, immarginate, agglutinate. Hymenium always exposed.

1. Babingtonii, B. (no. 554). On rotten wood.

254. PATELLARIA, Fr.

Receptaele patellæform, margined, always open. Hymenium even, subpersistent, but dusty from the breaking up of the asei. Asei fixed.

1. atrata, Fr. On dead wood.
2. rhabarbarina, B. (no. 89). Ou dead bramble.*
3. citrina, B. and $B r$. (no. 583). On rose-twigs, in a ruuning stream.
4. clavispora, B. and $B r$. (no. 774). On privet.
5. livida, B. and $B r$. (no. 775). On fallen fir-trees.
6. discolor, Mont. On fallen branches.

255. SPHINCTRINA, $F r$.

Excipulum almost horny, naked, piereed with a narrow, quite entire month. Disc at length dusted with the sporidia.

1. turbinata, Fr.; Sow. t. 386.f. 1. On Pertusaria.
2. LAQUEARIA, Fr .

Disc waxy, persistent, without any hypotheeium, but eovered with a horny, coriaceous, dimidiate, superior, deciduous exeipulum. Mouth eontraeted.

1. sphæralis, Fr. Stictis sphæralis, Syst. Myc. On ash.
2. TYMPANIS, Tode.

Receptaele margined, eyathiform, horny. Hymenium at first veiled, then breaking up.

* This belongs to Fries' genus Lachnella, but as he himself ís uncertain as to its immediate affinities, I think it better to leave it in Patellaria.

1. aluea, P. On alder.
2. Fraxini, Schwein. On ash.
3. eonspersa, Tr.; Grev. t. 335. On apple, hawthorn, ete.
4. saligna, Tode (no. 584). On privet.
5. CENANGIUM, $F r$.

Receptacle coriaceous, closed at first, then open, marginatc, covered with a thick cuticle. Hymenium persistent.

1. Ribis, Fr. (no. 585). On currant.
2. Cerasi, Fr. On wild cherry.
3. Pruuastri, Fr. On sloe.
4. Aueupariæ, Tr. On mountain ash.
5. pulveraccum, Fr. On wood.
6. fuliginosum, $T r$. On sallow.
7. ferruginosum, F. (no. 161). On piine-brauches eut green.
8. quereinum, F r. On oak-twigs.
9. Rubi, Fr.; Grev. t. 334. On raspberry.

259. ASCOBOLUS, Tode.

Reccptacle orbicular, marginate. Disc patcllæform. Asci exploded.

1. furfuraeeus, P.; Grev. t. 307. On eow-dung.
2. vinosus, B. (Platc 23, fig. 4.) Oı rabbit-dung.
3. eiliatus, Schm. On eow-dung.
4. glaber, P. On eow-dung.
5. Trifolii, Bernh. On half-dead elover-leaves.
6. earneus, P. On cow-dung.
7. saceharinus, B. and Curr. On old leather.

$$
\text { 260. BULGARIA, } F r \text {. }
$$

Receptacle orbicular, then truncate, glutinous within, at first closed. Hymenium cven, persistent, smooth.

1. iuquinans, F r. (Plate 22, fig. 7.) On oak-trumks, etc.
2. sarcoides, Fr. (Plate 18, fig. 6.) On old stumps.

261. AGYRIUM, Fr .

Receptacle compact, homogencous, waxy, gelatinous when moist, imnate, sessile, sphærical, even, smooth, and fructifying all round. Asci fixed.

1. rufum, P.; Grev. t. 232. On old, dry fir-wood.

262. STICTIS, P.

Receptacle obsolete. Hymenium even, determinate, orbicular and clliptic, immersed in the matrix, at first veiled.

Subgenus 1. Eustictis.-Often margined, suborbicular. Hymenium persistent.

1. radiata, P.; Grev. l. 227. On wood, twigs, etc.
2. pallida, P. On wood.
3. microstoma, Carm. On wood.
4. nivea, P. (no. 167). On fir-lcaves.
5. lichenicola, Mont. (no. 163). On foliaceous Cenomyces.
6. hysterioidcs, Desm. (no. 314). On Carices.

Subgenus 2. Xylographa.-Elliptic or elongated. Hymenium deliquescent.
7. parallela, Fr. On dead fir-wood.
8. longa, Fr. On wood.

Sulgenus 3. Prorolis.-Waxy, firm, round or írregular. Hymenium even, at length dusty.
9. versicolor, Fr. On pales, sticks, fir-concs, etc.
10. phacidioides, Ir. (no. 162). On Arbutus Uva-ursi.
11. Wauchii, B.; Grev. l. 206. On willow-branches.

263. ASCOMYCES, Mont. and Desm.*

Parasitic. Receptacle none. Asci forming a thin, pulverulent stratum, mixed with moniliform threads.

1. bullatus, B. On pear-leaves.
2. deformans, B. On peach-leaves, causing one form of blister.
3. Trientalis, B. On leaves of T. Europca.
4. Juglandis, B. (Gymnosporiun leucospermum, Mont.) On walnutleaves.

Order 24. TUBERACEI.

Hypogæous. Hymenium waved and sinuatc, often intricatc and closely packed.

264. TUBER, Mich.

Asci short, saccatc, disposed in sinuous vcius. Sporidia elliptic, reticulate, often cchinulate. Peridium warty or tubereled, rarcly smooth, without any definite basc.

1. brumale, Mich.; Ann. Nat. Hist. t. 18. p. 80 : (no. 320.)
2. æstivum, Vitt. (Plate 23, fig. 2.) The common truffle of our markets.
3. macrosporum, Vitt. (no. 580).
4. bituminatum, B. and $B r$. (no. 586).
5. rufum, Pico (no. 322).
6. scleroneuron, B. and $B r$. (no. 582).
7. nitidum, Fitt. (no. 321).
8. puberulum, B. and Br.; Ann. Nat. Hist. l.c. p. 81.
9. dryophilum, Tul. l.c. p. 80.
[^44]
265. CHOIROMYCES, Vitt.

Common integument, even. Base definite. Asci clavate. Sporidia spherieal.

1. meandriformis, Vitt. ; Ann. Nat. Hist. xviii. p. 80 ; Sow. t. 310.
2. AMYLOCARPUS, Curr.

Common integument thiek, convolute. Asci soon absorbed, saeeate. Sporidia globose, elothed with radiating threads, amylaeeous.

1. encephaloides, Curr. Pro. Roy. Soc. Jun. 1858. On chips, Swansea.
2. PACHYPHLEESS, Tul.

Common integument warty, opening by a terminal aperture. Base distinct. Asci clavatc. Sporidia spherieal.

1. melanoxanthus, Tul. (no. 319).
2. citrinus, B. and Br.; Ann. Nat. Hist. xviii. p. 79.
3. conglomeratus, B. and Br. l.c.
4. STEPHENSIA, Tul.

Common integument fleshy, eottony. Basc distinct. Hymenium intrieate. Asei cylindrieal. Sporidia globose, cven, at length verrueose.

1. bombycina, Tul. (no. 316).
2. HYDNOTRYA, B. and $B r$.

Common integument minutely papillose, not distinet. Hymenium eomplieated with gyrose laeunæ, leading to the surfaee. Asci oblong. Sporidia globose, tubereulate.

1. Tulasnei, B. and Br.; Ann. of Nat. Hist. xviii, p. 78.
2. HYDNOBOLITES, Tul.

Integument replaeed by white, cvanescent down. Hymenium
complicated with sinuous lacunæ, ending at the surface. Asci clliptic. Sporidia globose.

1. cerebriformis, Tul. ; B. and Br. l.c.
2. SPH届ROSOMA, Kl.

Common integument altogether wanting. Hymenium exposed, even or rugose, solid or lacunose. Asci lincar. Sporidia splicrical.

1. ostiolatum, Tul.; Ann. Nat. Hist. xviii. p. 79.

272. BALSAMIA, Vitt.

Common intcgument warty. Hymcuium complicated with distinct lacunæ not leading to the surfacc. Sporidia cylindrical or oblongo-clliptic, even, pellucid.

1. platyspora, B. and $B r$. (no. 318).
2. GENEA, Vitt.

Common integuncnt warty, with an aperture at the apex. Hymenium wased and sinuated, but not forming an intricate mass. Asci cylindrical. Sporidia globosc.

1. verrucosa, Vitt.; Ann. Nat. Hist. xviii. p. 78.
2. Klotzschii, B. and Br. l.c.
3. papillosa, Filt. l.c. p. 76.
4. ELAPHOMYCES, Nees.

Common integument thick, hard. Asci globosc or obovate. Sporidia consisting of several concentric utricles. Internal mass of Fungus at length dusty.

1. anthracinus, Vitt. (no. 81).
2. variegatus, Vitt. (no. 212, E. murieatus). (Plate 23, fig. 3.)
3. granulatus, Fr. (no. 211).

Order 25. PHACIDIACEI.

Receptacle more or less coriaccous or carbonaceous. Dise at length exposed by thic regular or irregular fissure of the outer coat.

275. PHACIDIUM, Fr.

Perithecium bursting irregularly in the centre, by valvular teeth.

1. Pini, Scclun. On pine-branches.
2. carbonaceun, Fir: On willow.
3. Vaccinii, k. On Vacc. Vitis-idœa.
4. coronatum, Fr . (no. 58). On dead oak-leaves.
5. dentatum, $F r$. On dead oak-leaves.
6. Rubi, $F r$. (no. 586). On dead bramble-stems.
7. repandum, Fr. On various living hcrbs.

Perithecium globoso-depressed, thin, black, at length open above and irregularly torn. Disc thick, placentæform.
8. patella, Grev. t. 103. On dead herbaceous stems.
9. RHYTISMA, $F r$.

Perithceia forming a confluent mass, opening by flexuous fissures.

1. maxinum, Tr.; Sow. t. 356. On willow.
2. Andromedre, Ir. On Andromeda polifolia.
3. salicinum, Ir.; Greo. t. 118. f. 2. On willow-leaves.
4. accrinum, Fr ; Grev. t. 118. א. 1. On sycamore- and maple-leaves.
5. punctatum, l 'r. On sycamore-leaves.
6. Urticæ, Ir. On dead nettle-stems.
7. TRIBLIDIUM, Reb.

Perithecium labiate, splitting from the centre towards the circumference.

1. ealieiiforme, Reb. (no. 775). On oak-wood.
2. HYSTERIUM, Tode.

Perithecium labiate; border entirc; orifice narrow-lincar. Asci elongated.

1. pulicare, P.; Grev. t. 167. f. 1. On dead wood.
2. elongatum, Wall. On dead wood.
3. curvatum, Fr. (no. 587). On dead rose and bramble.
4. lineare, Fr.; Grev. t. 167. f. 2. On dead wood.
5. Carmichaelianum, B.; Grev. t. 233. On smooth oak-bark.
6. Fraxini, P.; Grev. t. 72. On dead ash-twigs.
7. conigenum, Moug. and Nest. On cones of Scotch fir.
8. Vaecinii, Carm. On stems of Vacc. Myrtillus.
9. Rubi, P.; Grev. t. 24. On dead bramble.
10. Pinastri, Schrad.; Grev. t. 60, 26. On fir- and juniper-leaves.
11. melaleucum, Fr. ; Grev. t. 88. On dead leaves of Vaccinium Vitisidaca.
12. commune, lir. (no. 588). On dead herbaceous stcms.
13. typhinum, Fr. (no. 589). On dead Typha latifolia.
14. arundinaceum, Sclirad. On dead reeds.
15. culmigenum, Fr .; Grev. t. 87. On dead grasses.
16. maculare, Fr.; Grev. t. 129.f. 2. On leaves of Vaccinium.
17. foliicola, 1 rr.; Grev. t. 129.f. 1. On oak and ivy-leaves.

280. AILOGRAPHUM, Lib.

Perithecia branched, opening with a narrow-lincar fissurc. Asci subglobose.

1. amplum, B. and Br. (no. 782).

281. ASTERINA, Lév.

Perithecia semiorbicular, seated on a byssoid mycelium; mouthless, at length splitting irrcgularly. Asci short, mostly subglobose.

1. Babingtonii, B. Strigula Babingtonii, Eng. Bot. t. 2957. On living box-leaves.
2. LOPHIUM, $F r$.

Perithecia stipitate, wedge-shaped, opening with a narrow, longitudinal fissure. Asci elongated.

1. elatum, Grev. t. 177. f. 2. On fir-wood.
2. mytilinum, Fr.; Girev. t. 177.f. 1. On fir-wood.
3. STEGIA, Fr .

Perithecium orbicular, splitting horizontally; operculum deciduous.*

1. Ilicis, Fr. On holly-leaves.
2. TROCHILA, Fr .

Disc innatc, erumpent, placed upon a black hypothecium, persistent.

1. Craterium, F. Sphæria Craterium, $D C$. On box-leaves.
2. Lauro-Cerasi, Fr. Phacidium, Desm. On leaves of the common Portugal Laurel.

Order 26. SPHERIACEI.
Perithecia carbonaccous or membranaceous, sometimes confluent with the stroma, pierced at the apex, and mostly papillate. Hymenium diffluent.

285. CORDICEPS, Fr .

Stroma vertical, fleshy. Fructifying hcad distinct, hyalinc or coloured. Sporidia repeatedly divided, submoniliform.

[^45]1. C. militaris, Fr.; clavatc, bright scarlct ; head tuberculated; stem equal. (Plate 23, fig. 6.)

On pupe of moths, buricd in the ground. Not uncommon.
2. C. entomorrhiza, $F r$.; head subglobosc, brown; stem slender. (Plate 23, fig. 5.)

On pupe and larvæ of moths, buricd in the ground. Rarc.
3. C. capitata, Fr.; head ovate, globose, bay-brown or ycllowish; stem ycllow, at length blackish, erumpent.-Sow. $t .354$.

Iu pinc-woods, on Elaphomyces granulatus. Rarc.
4. C. ophioglossoides, Fr.; head clavatc, brownish-black; stcm olive, black, rooting.

In woods, on Elaphomyces muricatus. Not common.
5. C. gracilis, B.; head roundish-ovatc, even, brown ; stem rooting, clongated, cylindrical, somewhat flexuous.-Grev.t.86.

On the ground, in moist, mossy places. Shetland.
6. C. purpurea, Fri.; minute, palc purple; head subglobose ; stem short, straight, downy at the basc.-Tul. Ann.d. Sc. Nat. sér. iii. vol. xx. t. 3.

On grains of corn, which are converted by the mycelium into crgot.
7. C. microcephala, Tul.; minutc ; head globose ; stem long, slender, flcxuous.-Tul. l.c. f. 4, 5, etc.

Ou crgoted sceds of common recd. Sph. Hookeri probably belongs to this species.
8. C. myrmecophila, B.; ochraceous-white; stcm threadshaped, club ovoid, stcrile bclow, ribbed above: (no. 591.)Cesati in Rabenhoist, Exsic. n. 1033.

On an Ichnermon. Leigh Wood, Bristol, C. E. B.
9. C. alutacea, Fr.; clavatc, tan-coloured, or ncarly white; head confluent with the stem. (Plate 23, fig. 6.)

In fir-woods, amongst leaves and on furzc. Local.

286. HYPOCREA, Fr .

Stroma horizontal. Peritheeia tender, hyaline or eoloured.

1. H. gelatinosa, Fr.; convex, equal, opaque, dirty-white within ; perithecia prominent, darker than the stroma.

On fir. Appin, Capt. Carmichael. Variable in colour, yellow, green, umber, pallid, ete.
2. H. rufa, Fr.; convex, irregular, red-brown, dirty-white within, wrinkled when dry; ostiola slightly prominent.

On oak, ete. Not uneommon.
3. H. riccioidea, B.; large, fleshy, decply lobed, orange : (no. 95.)-Bolt. t. 182.

On willow. Very rare. I have Freneh speeimens from Dr. Montagne.
4. H. Vitalba, B. and Br.; brown, eonvex, sometimes slightly lobed, confluent; perithecia ovate; ostiola obsolete; sporidia fusiform, triseptate, appendiculate: (no. 829, with a fig.)

On Clematis Vitalba. Batheaston.
5. H. citrina, Fr . ; fleshy, forming a thin, lemon-coloured stratum, dotted with the ostiola.-Grev. t. 215.

On leaves, wood, ete. Rare.
6. H. lateritia, Fr.-Merulius helvelloides, Sow. t. 402.

On Fungi. Rare.
7. H. luteo-virens, Fr. (no. 594) ; Grev. t. 78.

On Fungi. Rare.
8. H. farinosa, B. and Br. (no. 592).

On fallen branehes.
9. H. floecosa, Fr. (no. 593).

On Lactarius torminosus.
10. H. typhina, B. ; Grev. t. 204.

On living grasses.

287. ENDOTHIA, Fr.

Red or tawny. Pcrithecia irregular, pallid, cellular. Asei diffluent.

1. E. gyrosa, Fr. (Spheria fluens, Sow.) ; subrotund, confluent, orange, vermilion ; stroma yellowish; perithceia gyrose, pulverulent, at length slightly prominent.

On bark. New Forest.

288. XYLARIA, Schrank.

Vertical, more or less stipitate. Stroma between fleshy and eorky, covered with a black or rufous bark.

1. X. polymorpha, Grev.; subearnose, gregarious, turgid, irrcgular, dirty-white, then black ; rcceptacle bearing peritheeia in every part.-Grev. t. 237.

On old stumps. Not uneommon.
2. X. digitata, Grev.; between fleshy and eorky, tufted; heads eylindrical, reddish-brown, then black; tips barren, acutc ; stem smooth.-Bull. t. 220.

On wooden struetures and stumps. Not eommon.
3. X. corniformis, Mont.; corky, brittle, simple, cylindrical, curved, black, covered on all sides with peritheeia; base subtuberous, villous.

On fallen branches. Rare. Laneashire.
4. X. Hypoxylon, Grev.; corky, simple or branched, eompressed, at first pulverulent with white meal, then naked; stem villous. (Plate 24, fig. 4.) -Sow. t. 55.

On stumps of trees, sticks, ete. Extremely eommon.
5. X. earpophila, Fr.; eorky, slender, simple ; head subulate, albido-pulverulent, at length black; stem very long, rootlike.

On beech-mast. Very common.
6. X. pedunculata, $F r$. ; corky, slender, simple, springing from a selerotioid base ; head ovate or subglobose : (no.93.)Sow. t. 437.

On soil, mostly attaehed to dung. Not common.
7. X. bulbosa, B. and Br. ; eorky, simple or forked, brown, then black; stem eylindrieal, bulbous at the base and spongy. (Plate 24, fig. 2.)-Pers. Obs. ii. t. 1. fig. 1.

Amongst fir-leaves. Rare. Bath, C.E.B.

289. THAMNOMYCES, Ehrb.

Stem shrubby or simple. Peritheeia formed of the same substance as the stem.

1. T. hippotrichioides, Ehrb.; branched, thread-shaped ; peritheeia seattered, papillate: (no. 94.)-Sow. t. 200.

On old saeks, matting, etc. Not common.

290. PORONIA, Fr.

Between fleshy and eorky. Fruetifying surfaee margined, orbieular. Peritheeia immersed, vertical.

1. P. punctata, Fr . ; stipitate, turbinate, externally blaekish; dise truneate, dotted with the blaek ostiola.-Grev. t. 327 ; Sow. t. 54.

On horse- and cow-dung. Not uneommon.

291. HYPOXYLON, Bull.

Stroma eorky or brittle, convex or planc, immarginate, at first elothed with a floccose veil, then with a blaek erust, distinet from the matrix. Perithecia vertieal or divergent.
a. Alobosa.

1. H. ustulatum, Bull.; effised, thiek, undulated, rugose, pulverulent when young, whitish, cincreous in the eentre, at
length rigid; perithecia ovate, furnished with a short neck. (Platc 24, fig. 3.)

On rotten trunks. Common.
2. H. nummularium, Bull.; determinatc, quite plane, externally and internally black; perithecia immersed, ovate; ostiola globose, slightly prominent.-Bull.t. 468.f. 4.

On wood and bark. Not common.
3. H. luteum, Fr .; orbicular, cup-shaped, black ; dise bordered, wrinkled; stroma yellow, pulverulcut; perithecia in many rows, emcrgent: (no. 170.)

On cldcr. Rare.
4. H. succenturiatum, $F r$.; oblongo-pulvinate, immarginate, even, black, greyish-brown within ; perithecia ovate, scattered, irregularly emergent: (no. 830.)

Ou oak-brauches. Rare.
5. H. gastrinum, $F r$.; ventricose, erumpent; stroma pallid ; perithecia scattered irregularly, necks included; dise nearly planc, black: (no. 598.)-Sow. t. 374. f. 9.

On elm. Not uncommon.

b. Pulvinatre.

6. H. concentricum, Grev.; large, subglobose, brownish, at length black, concentrically zoned within.-Bolt.t. 180; Sow. t. 160; Grev. t. 324.

On old ash-trees. Common.
7. H. coccineum, Bull.; globose, vermilion-brown, bright black within; perithecia ovate ; ostiola at length prominent.Grev. t. 136; Sow. t. 374.

On becch, etc. Very common.
8. H. multiforme, Fr.; irrcgular, at first rugose, rustybrown, at length naked, black, cinercous-black within; pcrithecia at length prominent, papillate. (Plate 24, fig. 4.) Sow. t. 355 ; Grev. t. 114.

On birch, ete. Very common. Sometimes elliptic.
9. H. marginatum, B.; hemispherical, confluent, at length black, of the same colour within; each ostiolum seated in a little margined dise: (no. 595.) -Schwein. Journ. of Ac. t. 2. f. 8.

On decaying wood of British growth, in the conservatory at Chatsworth.
10. H. cohærens, Fr.; confluent, convexo-plane, at first even, dirty-brown, then black within; peritheeia at length rather prominent, papillate.

On dead branches. Not common.
11. H. argillaceum, Pi.; subglobose, clay-coloured, brownblack within; perithecia slightly prominent, papillate: (no. 169.)-Fr. Obs. i. t. 2. f. 5.

On dead ash-branches. Not uncommon.
12. H. fuscum, Fr:; convex, pulvinatc, purple-brown, at length naked, black, black-brown within; ostiola umbilicate. -Sow. t. 373. f. 9 .

On hawthorn, hazel, etc. Very common.
c. Effusa.
13. rubiginosum, $F r$. On decorticated trunks, etc.
14. atro-purpureum, $F r$. On rotten wood, rare.
15. serpens, Fr.; Sow. t. 373.f. 10 ; 372. f. 11. On dead wood.
16. coprophilum, Fs: (no.596). On dung.
17. ud um, Fr . On rotten branches.
292. DIATRYPE, Fr.

Stroma partly formed from the matrix, and not distinet from it ; perithecia sunk, elongated above into a distinet neek, and frequently rostrate.

> a. Lignosa.

1. bullata, Fr.; Bolt. t. 122. f. 1. On willow.
2. undulata, $F r$. (no. 831). (Grev. t. 223. f. 1, is doubtful.) On dead brancles.
3. stigma, Fr.; Grev. t. 223.f. 2; Sow.t. 137. On dcad sticks.
4. disciformis, Fr .; Grev. t. 314. On dead sticks, especially beech.
5. aspera, $F r$. On oak.
6. favacen, $F r$. (no. 17). On birch.
7. verrucæformis, Fr.; Sow. t. 374. f. 4. On dead sticks.
8. lanciformis, Fr.; Sow. t. 371.f. 6. On birch.
9. quercina, Fr. (no. 839). On dead oak-branches.
10. dryophila, Curr. (no. 832). On oak-twigs.
11. nucleata, Curr. (no. 833). On furzc.
12. varians, Curr. (no. 834). On dead twigs.
13. denigrans, Curr. (no. 835).
14. Badhami, Curr. (no. 836).
15. inrqualis, Curr. (no. 837). On furze.
b. Versatiles.
16. scabrosa, $F r$. (no. 171). On maple.
17. Ulicis, B. (no. 599). On furzc.
18. podoides, Fr. (no. 600). On dead brauches.
19. ferruginea, F r. On lazel.
20. flaro-virens, F r.; Grev. t. 320. On bark or maked wood.
β. multiceps, Sow . t. 394. f. 8.
21. sordida, B. and $B r$. (no. 838). On oak-twigs.
22. Hystrix, Fr. (no. 840). On sycamore, etc.
23. ceratosperma, Fr . On rose, oak, etc.
24. strumclla, Fr . On gooseberry and currant.
25. pyrrhocystis, B. and $B r$. (no. 841, with a fig.). On hazel.

> c. Efficsa.
26. incarcerata, B. and $B r$. (no. 842). On rose.
27. stipata, Curr. (no. 843). On elm.
28. elevata, B. and Br. (no. 844). On Enonymus.
29. leioplaca, $F_{\text {r. ; Sow }}$ t. 374.f. 1. On wood and dry branches.
30. lata, Fr. On dead wood. Very variable.
31. decipiens, F^{r}.; Sow. t. 297. On hornbcam.
d. Circumscripta.
32. corniculata, B. and Br. (no. 845). On dead branches. 33. cincta, B. and $B r$. (no. 846). On dead twigs.

293. VALSA, Fr.

Perithecia carbonaceous, perfect, circinating, elongated into converging necks ; ostiola erumpent, joined together, or ending in a common disc.

1. Prunastri, Fr. On dead sloe.
2. stellulata, $F r$. On dead elm-branches.
3. enteroleuca, IFr. On dead branches.
4. exteusa, Fr. b. Rhamni. On dead Rhamnus catharticus.
5. syngenesia, $F r$: (no. 847). On dead elder.
6. Cratægi, Curr. (no. 848). On dead hawthorn-twigs.
7. detrusa, Fr. (no. 18). On dead berberry.
8. fibrosa, $F r$. On dead blackthorn.

b. Incuse.

9. nivea, Fr.; Soov. t. 372.f. 7. On dead poplar, hawthorn, etc.
10. leucostoma, Fr. On dead sloe.
11. Kunzei, Fr. (no.601). On dead fir.
12. angulata, Fr. (no. 848). On dead Cytisus Laburnum.
13. luteola, F^{\prime}. On dead oak-branches.
14. microstoma, Fr. (no. 20). On dead sloe.
15. profusa, $F r$. On dead Robinia.
16. dissepta, lr r. (no. 173). On various dead branches.
17. controversa, Frr. (no.602). (Sphæeria, Desm.) On various dead branches.
18. dryina, Curr. (no. 850). On dead oak-branches.
19. concamerata, Curr. (no. 867). On dead oak-twigs.
c. Obvallata.
20. coronata, $F r$. On dead oak, rose, hawthorn, ctc.
21. Abietis, $F r$ r. On dead fir.
22. elrysostroma, F_{r}. (no.22). (Sp. xanthostroma, Mont. no. 861, with a fig.). On hazel.
23. suffinsa, F_{r}. $=$ Sp. Cryptosporii, Curr. Micr. Journ. iii. p. 271.
24. leiphæmia, $F r$. On dead oak-twigs.
25. turgida, $F r$. On dead beeeh-twigs.
26. salieina, $F r$. On dead willow-twigs.
27. ambiens, Fr. On dead lawthorn, erab, etc.
28. stilbostoma, F. On various dead branehes.
29. platanoides, B. S. platanoides, Auct. On syeamore.
30. platanigera, B. and $B r$. (no. 851, with a fig.). On dead plane.

3]. tetratrupha, B. and Br. (no. 852, with a fig.). On dead alder-twigs.
32. fenestrata, B. and $B r$. (no. 853 , with a $f y$.). On dead oak-twigs.
33. tetraploa, B. and Curt. (no. 854). On dead sticks.
34. rhodophila, B. and $B r$. (no. 855). On dead rose-twigs.
35. quernea, Curr (no. 856). On dead oak-twigs.
36. bieoniea, Curr. (no. 857). On dead branehes.
37. pulchra, Curr. (no. 858). On dead branches.
38. tetraspora, Curr. (no. 859). On dead willow.
39. intexta, Curr. (no. 860). On dead oak.

d. Circinatre.

40. pulehella, Fr.: Grev. t. 67. On dead eherry and birel.
41. quaternata, $F r$. On dead beeeh.
42. furfuraeca, $F r$. On dead branehes.
43. hypodermia, Frr. (no. 21 : no. 862*, with a fig.). On dead elm.
44. eonvergens, $F r$. On smootl bark.
45. hapalocystis, B. and $B r$. (no. 615, with a fig.). On dead plane-twigs.
46. bitorulosa, B. and $B r$. (no. 861 , with a fig.). On dead hornbeam.
47. aglreostoma, B. and $B r$. (no. 862 , with a fig.). On dead elm-twigs.
48. Innesii, Curr. (no. 863). On dead branehes.
49. faginea, Curr. (no. 864). On dead beeelh-twigs.
50. tiliaginea, Curr. (no. 865). On dead lime-twigs.
51. vestita, Fr. (no. 866). On dead twigs.

294. MELOGRAMMA, Fr .

Perithccia confluent with the stroma, more or less frce above, destitute of any neck ; contents oozing out, and often forming cirrhi.

1. rubro-notatum, B. and Br.(no. 894). On dead elm-bark.
2. oligosporum, B. and $B r$. (no. 895 , with a fig.). S. maerospora, Desm. On dead bark.
3. fusisporum, Fr. (Moug. and Nest. 274). On dead bark.
4. homaleum, Fr. Exs. 382. On dead bark.

295. DOTHIDEA, Fr.

Perithccia nonc. Nucleus contained in globose cavitics, immersed in the stroma, with a decided neck and papillæform ostiolum.

1. tetraspora, B. and Br. (no. 899, with a fig.). On dead Daphune Lanreola and Ulex.
2. ribesia, P. On dead eurrant- and gooseberry-brauches.
3. Rosæ, Fr. Sph. Dothidea, Fr. On living rose-stems.
4. Piggotii, B. and Br. (no. 660). On Parmelia saxatilis.
5. filicina, Fr. On dead Pteris aquilina.
6. strixformis, F. On dead Umbellifera.
7. rubra, P.; Grev. t. 120. On living sloe-leaves.
8. fulva, IIoll. and Sclim. On living leaves of Prunus Padus.
9. Ulmi, Fr.; Grev. 6. 200. f. 1. On half-dead elm-leaves.
10. betulina, Fr.; Grev. l. 200. f. 2. On living bireh-leaves.
11. Heraelei, $F r$. On living leaves of I. Sphondylium.
12. Podagrarix, Ir. On living leaves of Agopodium Podagraria.*
13. Trifolii, F; On living elover-leaves.
14. Junei, F r. On half-dead stens and leaves of rushes.
15. Gramiuis, Fr. On half-dead leaves of grasses.

[^46]16. Caries, $F r$. (no. 604). On half-dead Carices.
17. Johnstoni, B. and Br. (no.661). On leaves of Epilobium.
296. ISOTHEA, Fr.

Nucleus without any perithecium, coloured or black, covered by the transformed substance of the matrix, or immersed in it.

1. rhytismoides, Fr. (no. 178, with a fig.). On leaves of Dryas.
2. pustula, B. (Phoma, $F r$.) On oak-leaves.
3. saligna, B. (Phoma, Fr.) On sallow-leaves.
4. HYPOSPILA, Fr.

Pcrithecia globosc, black, mouthless, altogether innate, concealed by the blackened suibstance of the leaves, and when that falls away splitting across.

1. quereina, F. (Sp. bifrons). On dead oak-leaves.
2. populina, Fr. (Sp. eeuthocarpa). On dead poplar-leaves.

298. STIGMATEA, Fr.

Parasitic. Perithecia globose, black, innate, slightly prominent. Nucleus firm, at first mouthless, then bursting with a roundish aperture.

1. conferta, Fr. (no. 177). On Vaccinium uliginosum.
2. Geranii, Fr?. (Dothidea). On Geranium sylvaticum.
3. Ranuneuli, Fr. (Dothidea). On Ranunculi.
4. Robertiani, Fr. (Grev. t. 146. f. 1). On leaves of Geraniunn Robertianum.
5. Polygonorum, Fr. On leaves of Polygona.
6. Alchemillæ, Grev. (Dothidea). On Alchemilla.
7. Chæomium, Fr. (no. 200). Dothidea Chætomium, Kze. On rasp-berry-leaves.
8. OOMYCES, B. and Br .

Perithecia erect, contained in a polished coloured sac, which is free above. Ostiola punctiform, apical.

1. carneo-albus, B. and Br. (no. 590). Sphæria, Libert. On leaves of Aira caspitosa.

300. NECTRIA, Fr.

Stroma nonc ; or, if present, bearing the naked, colourcd perithecia on its surface.

1. Caspitosa.
2. ochracea, Fr. (Sphæria, Grev.) On dead twigs.
3. cinnabarina, F r.; Grev. t. 135. On dead twigs.
4. coccinea, Fr.; Sow. t. 255. On dead twigs.
5. cucurbitula, Fr. (no. 174, 609). On dead branches.
6. sinopica, Fr. (no.97). On dead ivy.
7. aquifolia, B. On dead holly.
8. inaurata, B. and $B r$. (no. 781*). On dead holly.
9. Ralfsii, B. and Br. (no. 780). On dead branches.

2. Byssiseda.

9. aurantia, Fr.; Grev.t.47. On decayed Polypori. 10. rosella, Fr.; Grev. t. 138. On decayed Fungi, etc.

There is a distinct specics confounded with this, which has not hitherto been published.

> 3. Villosa.
11. flavida, Fr. (no. 610). On decayed stumps.
12. funicola, B. and $B r$. (no. 611). On decayed rope.
4. Denudatce.
13. Periza, Fr. (Platc 24, fig. 6.) On decayed stumps, etc.
14. Platasca, B. On touchwoorl.
15. sanguinea, Fr.; Grev. t. 175. f. 1. On stieks, wood, Hypoxyla, cte.
16. episphæria, Fr.; Giev. t. 175.f. 2. t. 50. On Hypoxyla.
17. Purtoni, Curr. (Grev. t. 50). On Valsa Abietis.
18. ochraceo-pallida, B. and $B r:$. (no. 607). On dead clm-branches.
19. muscivora, B. and Br. (no. 608). On mosses, which it soon destroys.
20. arenula, B. and Br. (no. 622, mith, a fig.). On Aira ccespitosa.
21. graminicola, B. and Br. (no. 897, will a fig.). 'On Aiva caspitosa.
22. Bloxami, B. and $B r$. (no. 781). On dead herbaceous stems.
23. Helminthicola, B. and B3r: (uo. 896). On Helminthosporia.
24. Rousscliana, Mont. (no. 898). On box-leaves.
b. viridis. On box-leaves.
c. fulva (uo. 182). On box-leaves.

25 . umbrina, $F r$. On dead bean-stalks.
301. SPH庣TA, Hall.

Pcrithecia black, picrced at the apex, mostly papillate, superficial or crumpent, without any stroma.

Serics 1. Superficiales.

a. Byssiseda.

1. thelena, Fr. On decayed wood.
2. aquila, Fr. (no. 180). On decayed wood and sticks.
3. Desmazicrii, B. and $B r^{\text {. (no. 618, with a fig.). On the ground. }}$
4. Dickiei, B. and $B i$. (no. 617, with a fig.). On living leaves of Linuca borealis.
5. tristis, Tode (no. 181, 618*). On dead sticks.
6. phæostroma, Mout. (no. 605). On dend sticks.
7. biformis, P. On decayed wood and on the ground.
8. Racodium, P. On decayed wood.

b. Tillose.

9. ovina, P. (Sorv. t. 219). On deeayed wood.
10. cersia, Curr. Linn. Tr. xxii. p. 316. On wood.
11. mutabilis, P. On decayed wood.
12. Brassicæ, Klotzsch; Ourr. l.c. with a fig. On dead cabbage-stalks.
13. scabra, Curr. l. c. p. 315, with a fig. On furze.
14. canescens, P. On decayed wood.
15. strigosa, A. and S. On decayed wood.
16. hirsuta, $F 5$. On decayed wood.
17. callimorpha, Mout. (no. S72). On dead bramble.
18. macrotricha, B. and Br. (no. 619, with a fig.). On dead Carex paniculata and beech-mast.
19. Chætomium, Cd. (no. 620, with a fig.). On dead Carex pendula.
20. Eres, B. and Br. (no. 621, with a fig.). On dead Carices.
21. exilis, A. and S. (no. 606). On pine-twigs.
22. calva, Tode. On decayed wood and branches.
23. pilosa, P. On decayed wood.
24. hispida, Tode; Grev. t. 82. On decayed wood.
25. pellita, $F r$. On dead herbaceous stems.
26. superficialis, Curr. l. c. p. 317, with a fig. On fir-wood.
27. capillifera, Curr. l. c. with a fig. On Corticium and subjacent wood.

c. Denudata.

28. Bombarda, Batsch. (Plate 24, fig. 5.) On decayed wood.
29. spermoides, Hoffin.; Grev.t. 6. On decayed wood.
30. papaverea, B. and Br. (no. 612, with a fig.). On old stumps.
31. moriformis, Tode ; Grev. t. 39. (Bertia, D. Not.)
32. innumera, B. and $B r$. On dead wood.
33. coufluens, Tode (no. 597). On dead trees, etc.
34. botryosa, F r. On old pales.
35. stercoraria, Sono. t. 357 . f. 1. On shecp- and horse-dung.
36. manmeformis, B. On decaycd sticks, ctc.
37. poniformis, B. On dead wood.
38. sordaria, $F r$. On moist pine-wood.
39. obducens, Fr. (no. 100). On old rails.
40. pulvis-pyrius, $P_{.}$; Grev. t. 152. On old wood, bark, etc.
41. rhytidodes, B. and Br. (no. 873, with a fig.). On ash-pollards.
42. perexigua, Curr. MSS. S. pustula, Curr. l.c. p. 317. On wood.
43. pulveracca, Ehr. On dry wood.

44, moroides, Curr. l. c. p. 318, with a fig. On wood.
45. myriocarpa, Fr. On old wood.
46. vesticola, B. and Br. (no. 874). On old decayed lineu.
47. rubicola, Curr. l. c. with a fig. On bramble.
48. collabens, Curr. l. c. p. 320, with a fig. Ou bark.
49. caudata, Curr. l.c. with a fig. On rotten wood.
50. Curreyii, Blox. ; Curr. l.c. p. 320, with a fig.
51. pulviscula, Curr. l. c. with a fig. On wood.
d. Pertusce.
52. pertusa, P. (no. 878, with a fig.). On elm-boards.
53. callicarpa, Curr. l. c. p. 221, with a fig. On old palings.
54. Aspegrenii, 1 Ir. (no. 879, with a fiy.). On dead blackthorn.
55. Jenynsii, B. and Br. (no. 875, with a fig.). On dead wood.
56. pœecilostoma, B. and Br. (no. 876, with a fig.). On dead Ulex.
57. brachythelc, B. and $B r$. (no. 877, with a fig.). On decorticated clder.
58. vilis, Fr. (no. 184). On dead wood.
59. mastoidea, $l i$. (no. 183). On dead ash-twigs, etc.
60. nueula, Fr. On dead bark.

Serics 2. Erumpentes.

c. Crespitosa.
61. populina, P. (no. 96). On ash. Sce Mag. Zool. and Bot. iii. t. 7 a-c.
62. cupularis, P. On dead branchcs.
63. acervata, Fr. (no. 98). On dead branches.
64. dioicn, Moug. $=$ S. pulvis-pyris, Auct. Curr. On dead branches.
65. Berberidis, P. ; Grev. t. 84. (Gibberidea, Fr.) On berberry.
66. Laburni, P. (no.865). On laburnum.
67. nigervima, Blox. (no. S69, with a fig.). On several species of Diatrype.
68. barbula, B. and $B r$. (uo. 870 , with a fig.). Ou dead pine-bark.
69. apotheciorum, Mass. (ro. 871). On Parmelia sulbfusca.
70. nidula, Soro, t. 394.f.2. On bcan-stalks.

f. Obturatre.

71. elongata, $F r$. On dead laburnum, etc.*
72. Spartii. On dead broom.
73. scoriadea, Fr. (no. 176). On dead birch.
74. Juglandis, Fr. On walnut-twigs.
75. Lonicerr, Sow. t. 393. f. 6. On honeysuckle.
76. oblitcrans, B. and $B r$. (no. 890, with a fig.). On bare fir-polcs.
77. Godini, Desm.; Sow. t. 336 (no.603). On dead reeds.
78. culmifraga, Fr. (no.614). On dead grasses.
g. Lophiostomre.
79. excipuliformis, Fr . (no. 880, with a fig.). On dead wood.
80. angustilabra, B. and Br. (no. 881, with a fig.).. On dcad Ulex.
81. macrostoma, Tode (no.881*). On dead holly, etc.
82. fibritecta, B. (no. 777). On bleached larch planks.
83. Arundinis, Fr. (no. 27, 639*). On dead reeds and wheat.

h. Ceratostoma.

84. cirrhosa, P. On soft decayed wood.
85. pilifera, I r. On fir.
86. ligneola, B. and Br. (no. 883, with a fig.). On decayed oak.
87. lampadophora, B. and $B r$. (no. 882, with a fig.). On decayed wood.

Series 3. Subtecte.

i. Immersa.

88. spinosa, P. On hard wood.
89. eutypa, I'r. On wood.
90. livida, Ir. On wood.
91. melanotcs, B. and $B r$. (no. 623, with a fig.). On oak palings.
92. hypotcplira, B. and Br. (no. 624, with a fig.). On oak palings.
93. hemitapha, B. and Br. (no. 885, with a fiy.). On felled oak.
94. apiculata, Curr. l. c. p. 32f, with a fig. On railings.

* S. fuliginosa, Fr., is probably merely the young state of Cenangium fuliginosum.

95. anserina, P. (no. 888, with a $f(y$.$) . On wood.$
** Endophlcea.
96. velata, P. (no. 19). On limc-twigs.
97. ciliaris, Curr. Micr. Journ. vii. p. 231.
98. cclata, Curr. MS. (S. obtceta, Curr. l. c. p. 232).
99. Xylostei, $P=$ S. semi-immersa, Grev. Auct. Curr. On woodbine. 100. decedens, Fr. (no. 24). On hazel.
100. discutiens, B. On elm.
*** Endocaulce.
101. spiculosa, P. On various herbaccous stems.
102. inquilina, F. On dcad Umbelliferce.
103. Berkcleii, Desm. (S. Angelicæ, B.), (no. 25, will a fig.). On various Umbellifere.
104. scirpicola, DC. On Scirpus lacustris.
105. phomatospori, B. and Br. (no. 647, wilh a fig.). On potato-stems.
j. Obtectre.

* Rameales.

107. lanata, Fr. (no. 185). On birch.
108. siparia, B. and Br. (no. 625, with a fig.). On birch.
109. Glis, B. and Curr. (no. 884). On oak.
110. pruinosa, Fir. Ou ash.
111. unicaudata, B. and $B r$. (no. 855 , with a fig.). On Clematis Vitalla.
112. vibratilis, $F r$. On sloe.
113. millcpunctata, Grev. t. 201. On ash.
114. salicella, $F r$. On willow.
115. Argus, B. and Br. (no.626, with a fig.). On birch.
116. Gigaspora, Desin. ; Curr. l. c. p. 326, with a fig. On maplc.
117. Corni, Mont. (Saccothecum, Mont.) On cornel.
118. aucta, B. and Br. (no. 628, will a fiy.). Ou alder.
119. bufonia, B. and Br. (no. 629, with a fig.). On oak.
120. dochmia, B. and Br. (no. 630, wilh a fig.). On elm.
121. farcta, B. and Br. (no.631, wilh a fig.). On elm.
122. trivialis, B. and $B r$. (no. 632 , with a fig.). On dead twigs.
123. revelata, B. and Br. (no. 634, with a fig.). On lilac.
124. quadrinucleata, Curr.l. c. p. 325 , with a fig. On sticks.
125. conformis, B. and $B r$. (no. 635, with a fig.). On alder.
126. Rurbi, Curr. l. c. with a fig. On bramble.
127. fuscella, B. and $B r$. (no. 636, with a fig.). On rose.
128. sepincola, $F r$. (no. 636, with a fig.). On various plants.
129. persistens, B. and Br. (no. 637, wilh a fig.). On rose.
130. futilis, B. and $B r$. (no. 638, with a fig.). On rose.
131. intermixta, B. and B. (no. 639, with a fig.). On rose.
132. oblitescens, B. and Br. (wo. 887, with a fig.). On Cornus.
133. epidermidis, Fr. (no. 186, 639*). On privet, etc.
134. Tamaricis, Grev. t. 45. On tamarisk.
135. ocellata, Fr. On ash. (Placed doubtfully by Fries in Halonia.)
136. melina, B. and Br. (no. 888, with a fig.). On ash.
137. Ashwelliana, Curr. l. c. t. 327, with a fig. On fir.
138. clypeata, Nees. Ou bramble and Epilobium.
139. appendiculosa, B. and Br. (no. 613, with a fig.). On bramble.
140. pusilla, Curr. MS. S. seriata, l. c. p. 329. On wood.

1\&1. Rusci, Wallr. (no.639*) $=$ S. glauco-punctata, Grev. On Ruscus aculeatus.
1+2. Pinastri, $F r$. ; Grev. t. 13. On fallen fir-leaves.

** Herbicola.

143. tomicum, Lév. (no. 633, with a fig.). On Aira ccespitosa and Juncus.
144. herpotricha, $F r$. On dead grass-stems.
145. lirella, P. On Spirea Ulmaria.
146. acus, Blox. ; Curr. l. c. p. 325, with a fig. On dock.
147. lincolata, Rob. (no.616). Ou Ammophila arundinacea.
148. maculans, Sow. (no. 641). On Scirpus palustris.
149. panthcrina, B. (no. 23). On Pteris aquilina.
150. pardalota, Mont. (no.99). On Convallaria multiflora.
151. ccuthosporoides, Berk. (no. 179). On laurel.

k. Canlicolce.

152. curvirostra, Sow. On dead umbellifcræ.
153. rostellata, $P r r_{r}$. On shonts of bramble.
154. coniforınis, Fr. (no. 190). On herbaccous stems.
155. acuminata, Sow. (no. 159). (S. carduorum, Wallr.) On thistles.
156. cruciferarum, Desm. (no. 191). On Cruciferce.
157. herbarum, $P=S$. Scrophularie, S. Pisi, etc. On various Herbaceous plants, etc.
158. rubella, P. On dead herbaccous stems.
159. Helenæ, Curr. l. c. with a fig. On herbaceous stems.
160. Doliolum, P. On herbaceous stems.
161. complanata, Tode. On herbaccous stems.
162. nigrella, Fr. (no. 649). On Dipsacus.
163. Corni-Succicæ, F_{7}. (Sp. Corni, Sow.) "Not a true Sphæria," Curr. l. c. p. 330.
164. dernsa, B. and Br. (no.639*, with a fig.) $=$ S. calva, Johnst. On Senecio Jacobra.
165. tritorulosa, B. and Br: (no.778, with a fig.). On Ipilotium.
166. Vectis, B. and Br. (no. 779, with a fig.). On Iris fuetidissima.
167. planiuscula, B. and $B r$. ($n 0.891$, with a fig.). On herbaccous stems.
168. Lunarix, B. and $B r$. (no. 892, with a fig.). On Lunaria rediviva.
169. nigrans, Desm. (no.640). On Dactylis glomerata.
170. semilibcra, Desm. (no.641). On reeds.
171. Ogilviensis, B. and Br. (no. 642, with a fig.). On Senecio Jacobaa.
172. Clivensis, B. and $B r$. (no. 643, with a fig.). On parsnip.
173. modesta, Desm. (no. 644, with a fig.). On herbaceous stems.
174. commanipula, B. and $B r$. (no. 645, with a fig.). On Scrophularic.
175. Thwaitcsii, B. and $B r$. (no. 646, with a fig.). On Umbellifera.
176. tosta, B. and Br. (no.648, with a fig.). On Epilobitm.
177. tenebrosa, B. and Br. (no. 649, with a fig.). On Arctirm.

1. Foliicola.
 * Rostellate.

178. fimbriata, B. On living leaves of hormbcam.
179. Coryli, Batsch; G'rev. t. 330. On living hazcl-leaves.
180. Avellame, Schin. (no. 101). On dead lazel-lcaves.
181. tubreformis, Tode; Grev. l. 335.f. 1. On dead alder-leaves.
182. Gnomon, Tode. On dead leaves.
183. sctacea, P. On dead leaves.
** Spharostome.
184. duplex, Soro. On grasses, etc. Var. Nardi not a true Spheria, Curr. l. c. p. 332.
185. recutita, F. On grasscs.
186. anarithma, B. and Br. (no. 893, with a fig.). On Aira caspitosa.
187. sabuletorum, B. and Br. (no. 650, with a fiy.). On Ammophila arundinacea.
188. phæosticta, B. (no. 65̆1, with a fig.). On Carex pendula.
189. eucrypta, B. and Br. (no.652, with a fiy.). On Carex pendula.
190. helicospora, B. and Br. (no. 653, with a fiy.). On Cyperacea. -
191. palustris, B. and Br. (no. 654, with a fig.). On Iris, Carex, etc.
192. carpinea, $F r$. (no. 655, wilh a fig.). On hornbeam.
193. Pteridis, Desm. (no. 656). On dead fronds of I'teris aquilina.
194. brassicæcola, B. and Br. (no. 656, with a fig.) $=$ Asteroma Brassice, Chev.
195. punctiformis, $F r$. On dead leaves.
196. maculeformis, P. On dead leaves. Not a truc Spheria, Curr. l. c. p. 332.
197. Eryngii, Fr. (no. 657). On Eryngium.
198. Rumicis, Desm. (uo.658). On living dock-leaves.
199. Leightoni, B. and Br. (no. 659, wilh a fig.). On dead leaves of Jinuca borealis.
200. crysiphina, B. and Br. in Journ. Lond. Hort. Soc. ix. p. 67. On living hop-leaves.
201. brumeola, P r. On lily-of-the-valley.
202. Osthuthii, Fr. (no. 102). On Angelica syluestris.
203. Lignstri, Desm. (no. 1296). On dearl privet-lcaves.

302. CERATOSTOMA, $F r$.

Pcrithceium soft, membranaceous. Ostiolum subulate, peneilled at the tip, or simply papillæform. Asci soon disappearing. Sporidia oozing out and forming a mass at the ostiolnm.

1. caprinum, Fr. Amongst rubbish.
2. Zobelii, B. (S. Zobelii, Tul. Fung. Hyp. p. 186, wilh fig.). On trufles.
3. MASSARIA, De Not.

Perithecium subcarbonaceous. Ostiolum papillæform. Sporidia septate or simple, oozing out and staining the matrix.

1. foclans, $F r=$ S. amblyospora, B. and $B r$. (no. 62, with a fiy.). On clm.
2. inquinans, l Pr. On dead branches.
3. fimeti, Tr. On dung. (IIypocopru, Fr. Subgenus, spores simple.)

$$
\text { 304. HERCOSPORA, } F \text { r. }
$$

Pcrithecium subcarbonaccous, cup-shaped, open above, covered by the bark, and differently coloured. Papilla hetcrogencous, crumpent.

1. pupula, Fr. On Philadelplus coronarius.

305. PYRENOPHORA, Fr.

Nuclens slowly formed, immersed in a sclerotioid mass which performs the office of a perithccium. Ostiolum at length slightly prominent. Sporidia multiseptate.

1. phæocomes, Tr.; Grev. l. 69. On grass.
2. GIBBERA, Fr.

Perithecium between waxy and horny, at length free, radiatorimose from the centre. Always closed.

1. Vaceinii, Fr.; Soro. l. 373. f. 1. On living branehes of Vaccinium Vitis-idara.
2. pulicaris, $F r$. On various branches, as fig, alder, etc.
3. Saubinetii, Mont. (no. 865). On herbaceous stems.

307. DICH ArNA, 2 Fr.

Perithecia subcarbonaceous, elliptie, closcd, bursting by a longitudinal fissure. Nucleus and asci diffluent, innatoerımpent.

1. rugosa, $F r$. On living bark of oak and beceh.
2. strobilina, F'r. On fir-cones. Not ascigerous, Curr. l.c. p. 329.

308. CAPNODIUM, Mont.

Parasitic. Mycelium crceping, black, consisting of brauched, articulated, even or moniliform threads. Perithccia clongated, frequently branched, composed of confluent threads, the tips of which are often free at the apex.

1. elongatum, B. and Desm. (no. 900). On pear-leaves, and shoots.

Order 27. PERISPORIACEI.
Perithccia subglobose, always closed, cxcept by dccay, mostly membranaccous. Nuclens never diffluent.
309. PERISPORIUM, Fr.

Pcridium subglobose, without any manifest thallus or appendages. Asci clavate. Spores indefinitc.

1. princeps, B. On dead wood.
2. Arundiuis, F^{\prime}. (no. 220), is a very cloubtful produetion.

310. LASIOBOTRYS, Kze.

Erumpent. Central peridium between fleshy and horny, 2 D 2
prolifcrous, collapsing above, attached to radiating fibres. Secondary peridia ascigcrous. Asci cylindrical.

1. Lonieerx, Kze.; Grev. l. 191 (no. 661, wilh a fiy.). On living leaves of honeysuckle.
2. Linnere, B. On living leaves of Linnea.

311. SPH 死ROTHECA, Lév.

Myeclium arachmoid. Pcrithecia globosc, containing a single globose ascus. Λ ppendages numerous, floccosc.

1. pannosa, lév.; Grev. t. 164.f. 2. On rose-leaves.
2. Castagnci, Lév. On hops. The common Hop-Mildew.

312. PHYLLACTINIA, Lév.

Parasitic. Perithecia hemispherical, at length depressed, seated on a persistent or cvanescent membranaceo-granular receptacle. Appendages straight, rigid, acicular, at length bent back.

1. guttatn, Fri. On leaves of oak, beeelh, ete.

313. UNCIN ULA, Lév.

Myeclium floccosc. Pcrithccia globose. Appendages rigid, simple, bifid or dichotomous, uncinate, at length bent upwards.

1. adunea, Zeév.; Grev. t. 296. On leaves of poplar, willow, ete.
2. bieornis, Lév. On leaves of maple, syeamore, ete.

314. MICROSPH ÆRA, Lév.

Myeclinm arachuoid. Appendages straight, dichotomous. Branchlets swelling at the tip, or filiform.

1. Berberidis, Lév. On leaves of berberry, ete.
2. Grossularix, Léc. On gooseberry-leaves.
3. penieillata, Lév. On leaves of Tiburnum Opulus.

315. ERYSIPHE, Hedw.

Myeelium araehnoid. Appendages floceose, simple or irregularly branehed.

Asci conlaining 2 sporidia.

1. Linkii, Lév. On leaves of Artemisia.
2. launprocarpa. On leaves of Cichoraceo.

Asci containing 3-8 sporidia.
3. graminis. On leaves of cereals and grass.
4. Martii. On leaves of pens, ete.
5. Montaguei, Lév. On leaves of burdock.
6. tortilis, $L k$. On leaves of eorncl.
7. communis, Schlecht. On leaves of various plants.
316. СН ÆTOMIUM, Kze.

Perithecium thin, brittle, mouthless. Asci linear, eontaining dark, lemon-shaped sporidia.

1. elatum, Kze.; Grev. t. 230. On damp straw.
2. chartarum, Ehb. On damp paper.
3. glabrum, B. On damp straw.

317. ASCOTRICHA, 3.

Peritheeium thin, free, mouthless, seated on loose, branehed, eonidiiferous threads. Asci lincar, containing dank, elliptie sporidia.

1. elartarum, B. (no. 116, with a fig.). On damp paper.
2. EUROTIUM, $L k$.

Perithecia reticulated, veseicular, coloured, attached to mueedinous threads. Asei delicate.

1. herbariorum, L.k.; Grev. t. 164.f. 1. On plants in herbaria. It is supposed that this is merely an ascigerous state of A spergillum.

Order 28. ONYGENEI.

Peridium formed of elosely-interwoven threads. Sporidia at length forming a compact, dusty mass.

319. ONYGENA, P.

Parasitic on animal substances. Peridium stipitate or sessile, paper-like, at length splitting. Asei delieate. Sporidia at length forming a dusty mass.

1. equina, $P_{\text {. }}$; Grev. $\ell .343$. On hoofs, horns, ete. 2. piligena, Fr. (no. 219). On deeaying flannel, etc. 3. apus, B. and $B r$. (no. 582). On bones.

Fam. VI.-PHYSOMYCETES.

Threads free, or only slightly felted, bearing vesieles whieh eontain indefinite sporidia.

Order 29. ANTENNARIEI.

Threads blaek, more or less felted, moniliform and equal in the same felt, bearing here and there irregular sporangia.

320. ANTENNARIA, $L k$.

Threads felted, black, articulated, often moniliform. Walls of sporangia mostly eellular. Spores chained together, immersed in gelatinous pulp.

1. semiovata, B. and Br. (no. 784, wilh a fig.). On Filix-mas.

321. ZASMIDIUM, $F r$.

Sporangium thin, earbonaceous, but brittle, growing on a septate, byssoid, equal myeelium. Mouth subumbilieate. Spores simple.

1. cellare, F_{r}.; Greo. t. 259. In cellars.

Order 30. hlucorint.

Threads free, bearing terminal or lateral sporangia.
322. ASCOPHORA, Tode.

Sporangia eollapsing, and at length hanging down over the fruetifying apiees like a hood. Fruit sometimes of two kinds.

1. Mucedo, Tode; Grev. t. 269. On bread.
2. clegans, $C d$. On fowls' dung.

323. MUCOR, Mich.

Threads free. Sporangia at length bursting, but not dependent.

1. Phycomyces, B. Plycomyces uitens, $A y$. On greasy walls, fat, etc.
2. ramosus, Bull. t. 4S0. f. 3. On decaying Fungi.
3. Mucedo, L. On fruit, etc.
4. caninus, P.; Grev. t. 305. On dogs' dung.
5. fusiger, $L k$. On decaying Agarics.
6. clavatus, L k. On fruit, etc.
7. amethysteus, B. in Eng. Fl. l.c. p. 332. On pears.
8. succosus, B. (no. 225, with a fig.). On stumps of Aucubn.
9. delicatulus, B.; Fing. Fl. l.c. On rotting gourds.
10. tenerrimus, B. (Hydrophora tenerrima, B. ; Hook. Journ. iii. p. 78, with a fig.) On sticks, in woods.
11. subtilissimus, B. in Journ. Lond. Hort. Soc. iii. p. 98. On mildewed onions, devcloped from Sclerotium cepceorum.

324. HYDROPHORA, Tode.

Threads ereet, tubular, sparingly artieulate, equal above, terminated by a vesicle whieh is at first watery and erystalline,
then turbid, and at length indurated and persistent from the conglomeration of the spores.

1. stereoren, Tode. On dung.

325. ENDODROMIA, B.

Vesicle very delicate, perforated by the stem, filled with delicatc, branched, radiating threads, and globose spores, with a nucleus endowed with active motion.

1. vitrea, B.; Hook. Jonm. l. c. p. 79, wilh a fig. On sticks, in woods.

326. SPORODINIA, Lk.

Stem dichotomously branched. Vesicles solitary, terminal, at lengtl splitting horizontally. Columella large. Spores simple, growing on the columella.

1. diehotoma, Cd . On deeaying Fungi.

327. ACROSTALAGMUS, Cd .

Floeci branehed. Branches vertieillate. Vesicles terminal, pierced by the threads, from the tips of which the spores are produeed within the cells.

1. cinnabarinus, Cdd. On decaying plants. Verticilliun laterilium is a form of this with naked spores. Artotrogns, Mont., is the sccondary fruit of Peronospora.
2. SYZYGITES, Ehb.

Threads branched above. Vesicles of separate branches, eonjugating, and forming a distinct sporangium.

1. megaloearpus, Ehb. On clecaying Agarics.
2. ENDOGONE, Lk.

Hypogæous. Floeei collected into a globose, spongy mass.

Vesieles globose, solitary, or collected in little faseicles at the ends of the branches.

1. E. pisiformis, Lk.; inasses globose, dry ; vesieles large, visible to the naked eye. (Plate 24, fig. 7.) - Amm. of Nat. Hist. xviii. p. 81.

On the ground, amongst moss. Bristol.
2. E. laetiflua, B. and Br. l.c.; irregular, depresso-globose, white, then dirty flesh-eoloured, fetid, filled with thick, red-dish-grey milk; vesieles visible to the naked eye.

On the ground. Chudleigh, C. E. Broome.

APPENDIX.

SCLEROTIUM, Tode.
Between cartilaginous and fleshy, with a thin, inseparable cuticle. Fruit, if any, unknown.

1. complanatum, Tode; Sow. t. 276. On dead leaves, etc.
2. scutcllatnm, A. and S. ; Grev. t. 144. f. 1. On dead leaves, ete.
3. Semen, Tode; Grev. t. 144. f. 2. On decayed eabbage-stalks, ete.
4. еерærorum, B. On onions (no. 168).
5. stereorarium, $D C$. On dry corrdung.
S. lotorum and Medieaginis are merely tubcriform swellings on the roots of Leguminosre.
6. quereigenum, B. On decorticated oaks.
7. truncornm, Tode (no. 53). On old stumps, amongst moss.
8. fungornm, P. On gills of dead Λ garies.
9. lacunosum, P. Amongst leaves, ete., on the ground.
10. muscornm, P.; Grev. t. 101. Amongst moss.
11. rosenm, Kneiff (no. 163). On Juneus eonglomeratus.
12. varium, P. On decaying carrots, ete.
13. medullare, B. (no. 14). On Fern.
14. neglectnm, B. (no. 91). On dead leares.
15. pyrinum, Fr. On various finits.
16. Rubi, Carm. On bramble-leares.
17. bullatum, $D C$. On decaying gourds and cucumbers.
18. durum, P.; Grev. t. 1. On various herbaceons stems.
19. Pustula, DC.; Grev. t. 77. On oak-leaves.

RHIZOCTONIA, $D C$.
Trregular, between cartilaginous and fleshy, with a thin, inseparable cuticle, attached, root-like fibres. Frnit unknown.

1. Crocorum, DC. On roots of saffron, asparagus, potatoes, etc.

GLOSSARY.

Acrogenous, attached to the tips of the threads or their branchlets.
Adnate, firmly attached to the stcm.
Adnexed, just reaching the stem.
Agglutinate, firmly glued to the matrix.
Amphigenous, when the hymenium is not confined to a particular surface.
Anaslomosing, spoken of threads which beeome confluent with each other, and form an irregular network.
Apices, tips of threads or their divisions.
Apperdiculate, attached in fragments to the border of the pilcus; sometimes applied to spores or sporidia which have terminal appendages.
Approximate, approaching the stem, but not quite reaching it.
Arachnoid, delicate, like a spider's web.
Areolate, divided into little arex.
Aristale, bearded; applied to spores and sporidia.
Ascus, a delicate sac contaning sporidia.
Astomous, without any aperture.
Allennated, spoken of gills which are
gradually narrower at either extremity,
Auriform, shaped like an ear.
Byssiseda, seated on fine, matted threads.
Byssoid, resembling fine, matted threads, which are often eollected in little bundles.
Cespilose, growing in tufts.
Capillitium applies to the threads of Puff-balls.
Carbonized, impregnated with dark matter, so as to appear more or less charred.
Caulicola, growing on herbaceous stems.
Ceratostomia, spoken of perithecia in which the neek is much elongated.
Circinata, disposed in a circle.
Circumscripla, surrounded by a thin, black crust, and, consequently, when the stroma is broken off, a black ring is left on the matrix.
Concatenate, chained together.
Conchiform, shell-shaped.
Conglutinatc, glued together, as when the spores are collected in little heaps whieh do not easily break up.
Conidia, dust-like secondury spores.

Connate, as when two or more pilei beeome united.
Continuous, as when one organ runs into another without any deeided interruption. This is, I believe, sy. nonymous with contiguus of Fries.
Cremulate, notelied or sealloped.
Cyst, a subglobose cell or earity.
Dccurrent, when the gills are very acute behind, and run down the stem.
Denudatar, naked, exposed, not immersed.
Determinate, when a Fungus has a distinetly-defined outliue.
Dichotomous, regularly forked.
Dimidiate, semiorbieular ; when relating to the gills, it intimates that they reaeh only lialfway from the border of the pileus to the stem.
Distant, far apart from each other, whereas remote mems that they do not reach the stem.
Echinate, beset with short, rigid bristles.
Echinulate, the samo as the last, only with shorter and more delieate bristles.
Effuse, spread out over the matrix.
Effised, sprend ont over the matrix.
Emarginate, when the gills are suddenly seooped out before they reach the stem.
Emergent, springing from beneath the surface of wood, bark, or eutiele.
Endocaula, growing in the substance of herbaceous stems.
Endochrome, the coutents of eells where no sporidia are produced before their production.
Endophlœex, growing in bark.

Excipulum, a little saueer or reeeptacle.
Farinose, mealy.
Fasciculate, growing in littlebundles.
Fibrillose, elothed with little, loose fibres.
Fistulose, hollow, like a pipe.
Flocei, threads, as those of a Mould.
Furfuraceots, branny.
Fusiform, spinclle-shaped.
Grumors, elotted, as the contents of some eells.
Guttate, marked with tear-like spots.
Gyrose, folded and waved, or marked with wary lines.
Herbicolce, growing on herbacious plants.
Hcterogencous, when adjaeent parts are different in strueture.
Homogeneous, when they are similar in strueture.
Hyaline, transparent.
Hygrophanous, having a watery aspeet when moist, but more or less opaque when dry.
IHymenizm, the fruetifying surfaee.
IIymenophorum, the strueture which bears and gives rise to the hymenium.
Mypogaous, subterraneous.
Hypothecium, the part beneath the nueleus in Sphariacei, cte., espeeially when it is compaet.
Inmersa, sunk into the matrix.
Imperforate, without any terminal aperture.
Incusce, sunk as jewels in a die.
Indehiscent, not splitting, exeept by deeay.
Infundibuliform, funnel-8laped.
Inscrted (insititius) ; growing immediately from the matrix, like a graft from its stoek.

Labiate, aperture with distinct, liplike borclers.
Laccate, varnished, or covered with a coat liko sealing-wax.
Lacunose, having little eavities, or pitted.
Lingueform, tongue-shaped.
Lophiostoma, aperture erested.
Marginate, having a distinct, definite border.
Matrix, anything on which a Fungus grows.
Moniliform, necklace-like.
Mucedinous, like a Mould.
Mycelioid, like a mycelium.
Mycelium, spawn, which may be either filamentous or vesicular.
Neck, spoken of perithecia which resemble an india-rubber bottle with a distinct neek.
Nucleus, the hymonium of perithecia, which is generally more or less gelatinous.
Obtecte, covered by the cuticle.
Obturata, literally bunged up, applied to certain Splucrice.
Obvallate, literally walled up, applied to certain Spherice.
Ostiolum, mouth of perithecium, like the mouth of a bottle.
Pallid, pale, but undecided in colour.
Papillate, corered with little paplike elevations, or cuding in a papilla.
Papyraceous, thin, like paper.
Patellaform, saucer-shaped.
Pendulous, hanging down liko the flower of a foxglore.
Peridium, gencral covering, as in a Puff-ball.
Peridiola, used when a number of smaller peridia are containcel within the gencral envelope.

Peronale, used when the stem has a distinet, stocking-like coat.
Perithecia, the bottle-like, fruit-bcaring bodies in Sphariacei, which may be naked, sunk in a stroma, or covered by a portion of the matrix.
Pertusce, picreed at the apex of the perithecium by the separation of the ostiolum.
Pileoli, secondary pilei.
Pileus, the hat-shaped receptacle in Mushrooms, ete.
Pruinose, frosted, or covered with bloom like a plum.
Pulvinate, cushion-shaped.
Rameales, growing on twigs.
Remote, spoken of gills which are free, and leave a considerable space between them and the stem.
Reniform, kidney-shaped.
Resupinate, spread over the matrix, and having the hymenium upwards, and not beneath, as in the Mushroom.
Rhizomorploid, like roots.
Rimose, cracked.
Ring, part of the reil adhering to the stem, and forming a ring or collar.
Rivulose, marked with lines like the rivers in a map.
Rostellatre, having a little, elongated neck, extending beyond the surface of the matrix.
Rostrate, having a long, free neck.
Scrobiculate, marked with little pits.
Scutellaform, shield-like.
Septate, having partitions.
Sinuated, when the gills are suddenly waved just before they reach the stem.
Spathulate, shaped like a spatula.

Spherostome, having a glohular ostiolum.
Spicules, the points to which the sporcs are attached, sometincs called sterigmata.
Sporangia, large vesicular bodies containing sporidia or distinct organisms, producing spores in the centre.
Spores, reproductive cells, borne freely on the sporophorcs.
Sporidia, reproductive cells produced within asci or sporangia, from a transformation of their endochrome.
Sporophores, cells which are surmounted hy fertilo spicules, sometimes called busidia.
Squarrose, rough with projecting or deflexed scates.
Strigose, rough with fuscicles of hairs.
Slroma, the substance in which the perithecia are immersed in the componnd Spheriacea.
Stuffect, spoken of the stem when filled with a cottony web, or a spongy mass distinct from tho walls.
Sub, used in composition to denote a slight degree of anything.
Subiculum, the filamentous mycelium of some Spherice.

Subtectre, more or less covercd.
Subulate, awl-shaped.
Sulcate, furrowed.
Tan-coloured, the colour of washleather.
Tomiparous, producing spores by division.
Trama, the substance intermodiate between the hymenium in the gills of Agarics or pores of Polyporus.
Tremelloid, shaking like jelly.
Umbilicate, with a somewhat definite central depression.
Umbonate, with a central boss.
Uncinate, hooked, or hook-shaped.
Ungulate, hoof-shaped.
Vcil, a partial covering of the stem or margin of the pilens.
T'entricose, swelling ont in themiddle.
Termiculatc, worm-shaped.
Verrucceform, wart-shaped.
Versatiles, various in form and nature. Tersiform, various in form.
Tesicular; having a bladder-like sporangium, or composed of cells.
Verticillate, whorled.
Tillosce, covered with down.
Tirgate, streaked, or with wand-like branches.
Tolva, a general wrapper, sometimes membranous, sometimes gelatinous.

PRINCIPAL AU'THORS QUOTED UNDER THE DESCRIBED SPECIES.

Abbildungen der Schwämme, 4to, figures partly from Bolton.
Afzelius in Vetensk Acad. Handlungen, 1783.
Albertini and Schweinitz, Conspectns, 8vo, 1805.
Batsch, Elenchus Fungornm, 4to, 1783-1789.
Battarra, Fungorum Historia, etc., 4to, 1759.
Berkeley, English Flora, rol. r., part ii., 8vo, 1836.
—__ in Taylor's Journal. Sce p. 305.
-_- avd Broome in ditto. Sec p. 305.
—_ and Curtis in ditto. See p. 305.

Bloxam in History of Lecestershire, ined.
Bolton, History of Funguses, 4to, 1788-1791.
Brondeau, Plantes Cryptogames de l'Agenais, 8ro, 1828-1830.
Bulliard, Herbicr de la France, fol., 1780-1795.
Cesati in Rabenhorst's Exsiccata, 4to.
Chevalicr, Floro de Paris, 8vo, 1836.

Chevalier, Fungorum ct Byssorum Illustrationcs, fol., 1837.
Curtis, Flora Londinensis, folio, 1817-1828.
--, British Entomology, 8vo.
De Candolle, Florc Française, 8vo, 1815.

Delastre, Flore de la Vienne, 8vo, 1842.

Desmazières, Plantes Cryptoganes du Nord, 4to ; Exsiccatie, 1825, etc.
Dickson, Plantarum Cryptogamicarum Fasciculi, 4to, 1785-1801.
Dillenius, Catologus, 8vo, 1749.
Ditmar in Sturm's Deutschlands Flora, 12mo, 1817.
Dozy and Molkenboer, Novr Fungorum Species, 8ro, 1846.
Duby, Botanicon Gallicum, 8vo, 1828-1830.
Ehrenberg, Sylvo Mycologice Bc. rolinensis, 4to, 1818.
--- in Hore Plysice Bcrolinenses, fol., 1820.
Ehrhart, Exsiccata, fol., 1746.
Englislı Flora, vol. v., part ii., 8vo, 1837.

Flora Danica, fol., 1761, cte.

Fries, Observationcs Mycologice, 8vo, 1815-1818.
—, Systcma Mycologicum, 8ro, 1821-1830.
-, Epicrisis, 8ro, 1836.
-, Summa Vegetabilium Scanclinaviæ, 8vo, 1816.
-_, Mymenomycetes, 8 vo.
Greville,ScottishCryptogamic Flora, 8ro, 1823-1829.

- Flora Edinensis, 8vo, 1824.

Hedwig, Muscornm Frondosorum, etc., fol., 1787-1797.
IIill, History of Plants, fol., 1751.
Hoffinann, Vegetabilia Cryptogama, 4.to, 1787-1790.
--, Dcutschlands Flora, 12mo, 1791.
Iolmskiold, Beata raris Otia Fungis impensa, fol., 1790-1799.
Inudson, Flora Anglica, 8vo, 1762, 1778, 1798.
Inssey, Illnstrations of British My^{\prime} cology, 4to, 1817, etc.
Jacqnin, Miscellimea Austriuca, 4to, 1778-1781.
——, Collcetanen, 4.to, 17861796.

Junghuhn in Limncấ, vol. r., 1830.
Klotzsch, Munnscript Observations in Sir W. J. Hookcr's Herbarium.
Knapp, Journal of a Naturalist, 8 го.
Krombhole, Naturgetrene Abbildungen, fol., 1831-1817.
Linneus, Flora Suceicn, 8vo, 1755.
Lasch in Linnæ̂̂, vol. iv., 1829.
Léveillé in Annales des Scicnces Naturclles, 1846-1848.
Mattusehku, Flora Silesiaca, 8vo, 1776, 1777.
Mieheli, Nova Plantarum Genera, fol., 1729.

Montagnc, Sylloge, 8ro, 1856, where a complete list of his various works will be found.
Müller in Flora Danica, t. 601-900.
Nees von Esenbeck, Das System der Pilze und Schwämme, 4 to, 1816.
Otto, Giftpflanzen, 8vo, 1831.
Persoon, Observationes Mycologicæ, 8vo, 1796-1799.
--, Commentatio, 8vo, 1797.
———, Tentamen, 8го, 1797.
--, Icones ct Descriptiones, 4to, 1708-1800.
——, Synopsis, 8vo, 1801.
——-, Icones Pictæ, 4to, 18031806.
---, Mycologia Europæa, 8ro, 1822-1828.
Ray, Synopsis, 8vo, ccl. 3, 1724.
Relhan, Flora Cantabrigiensis, 8 ro, cd. 2, 1802.

Retz in Vetensk Ac. Handlungen, 1769.

Rostkorins in Sturm's Deutschlands Flora.
Rotl, Catalecta Botanica, 8ro, 1797-1806.
Schæffer, Fungorum Icones, 4to, 1762-1774.
Schrader', Spicilegium, 8vo, 1794.
Schumacher, Enumeratio Plantarum Sœllandix, 8vo, 1801-1803.
Scopoli, Flora Carniolica, 8vo, 1772.
Secretan, Mycographic Suisse, Sro, 1833.

Smilh and Sowerby, Engl. Botany, 8 vo, 1790 , etc.
Sommerfelt, Supplementum Flora Lapponicie, 8ro, 1836.
Sowerby, English Fungi, fol., 17971809.

Svensk Botanils, $8 \mathrm{vo}, 1802$, ctc.
Tourncfort, Institutioncs, $4 t 0,1700$.

Tulasne, Champignons Hypogés, fol., 1851.

Various Manoirs in Amales des Sciences Naturelles.
Vahl in Flora Danica, t. 901-1260.
Taillaut, Botanicon Parisiense, fol., 1727.

Vittadini, Tentamen Mycologicum, 4to, 1826.

Monographia Tuberaccarum, 4to, 1831.

- Funghi Mangarecci, 4to, 1835.
y. dineorum, 4to, 1842.

Wahlenberg, Flora Lapponica, 8ro, 1812.
———, Flora Upsaliensis, 8 ro, 1820. 1824-1826.
Wallroth, Flora Cryptogamica Germanie, 12 mo , 1831-1833.
Wcimmann, Hymeno- et Gasteromycetes, 8vo, 1836.
Willdenow, Flora Bcrolinensis, 8 vo, 1787.

Withering, Botanical Arrangement, 8ro, ed. 3, 1796.

INDEX TO INTRODUCTION.

Athalium, 23.
Agaric of Holly, 6.
Agaricini, G, 20.
Agaricus, 51.
-- abortivus, 59.
-—— eruginosus, 48 .
-——arvensis, 64, 79.
-——emmestris, 56, 64.
-- cernssatus, 56.
-—— disscminatus, 28.
-—— cuosmos, 68.
———fabaccus, 80.

- fusipes, 43.
-- gliodermus, 25.
-—— laccatus, 56.
- molleus, 88.
- muscarius, 66.
——_odorus, 66.
-——olcarius, 48.
——ostreatus, 59, 63.
-- popinalis, 59.
-—— procerus, 61.
--_ racemosus, 59.
-——rubescens, 56.
Algæ, 30.
Amadou, 2, 65.
Annulus, 4.
Antennaria cellaris, 31.
Anteunarici, 19, 21.
Asci, 10, 17, 49.

Ascomyces, 45.
Ascomycetcs, 17, 21.
Ascobolus, 33.
Ascophora, 59.
Ascröc, 80.
Astcrophora, 59.
Auricularini, $9,17,20,87$.
Balanophora, 24, 39.
Batarren, 12, 22.
Bloodrain, 32.
Blne-Mould, 16.
Bolctus, 6, 7, 11, 51.
-, change of colour in, 6.

- æneus, 48.
-_ edulis, 77.
Botrytis, 70, 86, 44.
- curta, 46.
-- parasitica, 44.
Bulgaria inquinans, 51.
Bunt, 52, 75.
--, cure of, 75.
Cæотасеі, 15, 21.
Cantharcllus cibarius, 5.
Caterpillar Fungus, 18.
Champignon, 1, 2, 5, 61.
Chantarelle, 5.
Clathrus cancellatus, 12.
Clavaria, 19, 87.
- fastigiata, 9.
-_ vermiculata, 9.

Clavati, 9, 20, 46, 86.
Conidit, 50.
Coniomycetes, 15, 21, 58.
Coprini, 28, 42.
Coprinus, 51.
———, barren, 4.2 .
__ radiatus, 28.
Cordiceps, 47, 75.
-_ entomorrhiza, 70.
-_ militaris, 70.
-_ Sincnsis, 66.
Corcmium, 46
Corticium, 87.
Cortina, 4.
Cyathus vernicosus, 14.
Dactylium roseum, 31.
Dredalea queıcina, 5.
Dasyglæa, 26.
De Bary, 13, 26, 88.
Dematiei, 16, 21.
Dimidiate, 5.
Dry-rot, 7, 72.
Elrellacei, 18, 21.
Ergot, 66, 75, 76.
Erineum, 88.
Fairy Rings, 4.I, 67, 79.
False Truffle, 65.
Fermentation, 64.
Fistulina, 6.
Fungals, 2.
Fungi, name, 2.
\longrightarrow, gill-bearing, 5 .
\longrightarrow, vcin-bcaring, 5.
——, pore-bearing, 6.
——, tootl-bearing, 8 .
--, ear-shaped, 9.
\longrightarrow, club-shaped, 9.
——, jelly-like, 10.
\longrightarrow, underground, 11.
——, Phalloid, 12.
\longrightarrow, Puff-ball, 12.
——, shimy-spawned, 13.
——, relations to animals, 13.

Fungi, bird's-nest, 14.
——, dust-seeded, 15.
——, Blights and clark Mildews, 1
——, Mould-like, 16.
--, ascigerous, 17.
__, tabular view of 20.
——, sporiferous, 20.
\longrightarrow-, sporidiiferous, 21.
——, nature of, 22.

- mombers of ∇ egetable Kingclom, 22.
——absorb oxygen, 24.
——, specics definite, 24.
--, drawings of, at Stockholm, 25.
-_ not creatures of chanec, 25.
--, habitats of, 27.
- suffer from cxcess of mois. ture, 28.
--, growth on poisonous substances, 30 .
——— in closed cavities, 31.
——_ in bread, 32.
—— on cooked provisions, 32.
-- on animal substances, 33.
——, geographical distribution, 34.
- in Europe, 36.
-, fossil, 37.
--, growth of, 39 .
——, spawn of, 39 .
--, centrifugal dcvelopment, 40 , 43.
———decp penetration of spawn, 41.
-_ power of overcoming resistance, 42.
--, cluration of, 43.
——, structure of, 4.4 .
--, vessels of latex in, 47.
——, colour of, 48.
——, Iuminous, 48.
—, heat generated by, 48.
—_, oclours supposed fatal to, 48.
——, propagation of, 49 .
-, parasitie(fructificationin), 51.

Fungi, propagation by fragments of spawn, 52.
--, variations of, 54 .
--, no liybrids, 54.
--, uses of, 60 .
-- as nutriment, 60.
---, aceidents from, 63.
-- anæsthetie, 66.

- as manure, 67.
--, worship of, 67.
--, diseases prodneed by, 68.
- in animals, 68.
- iu vegetables, 70.
——, insect-borne, 70.
- on living plants, 73.
-_, eultivation of, 77.
--, eolleetion and preservation of, 83.
——, systematie arrangement, 86 . Fungology, 2.
--, objeetions to the term, 2.
Funguses, 2.
Fusisporium, 52.
Gulls, 88.
Gasterounyeetes, 11, 20.
Geaster, 12.
Gcoglossum, 87.
German tinder, 65.
Germination, 50, 81.
Gill-bearing Fungi, 5.
Gills, variations of, 56.
Graphiola Phomieis, 56.
Gymnosporium, 45.
Helvella, 18.
Hericium, 8.
Hydnangium earotæeolor, 11.
Hydnei, 8, 20.
Mydnum aurisealpium, 8.
——repandum, 8.
Mymenanginm, 13.
Mymenium, 5, 7, 10, 56.
-_, variations of, 56 .
Iymenogaster, 13.

Hymenomyeetes, 10, 20, 56.
Hyphomyeetes, 16, 21, 46, 58.
Hypogæi, 11, 18, 20.
Hypoxylon marginatum, 80.
Hysteranginm, 87.
Hysterium Rubi, 51.
Isaria, 86.
Isariei, 16, 21.
Jew's-ear, 65.
Ketehnp, 64.
Labrella Ptarmiex, 53.
Laetarii, 4.7.
Lamellæ, 3.
Leeidea atro-albn, 40.
Leutinus lepideus, 59.
—— tigrinus, 59.
Lenzites betulina, 5.
Leptomiti, 29, 53.
Liehen eoneentrieus, 40.
Lycogala epidendrum, 26.
-- terrestris, 23.
Lyeoperdon, 23.
-_ Bovista, 67.
Marasmius hæmatoccphalus, 80.
———o orcades, 15.
———rotula, 58.
-_- urens, 61.
Melaneonici, 15, 21.
Melanogaster Broomeianus, 11.
Mernlius laerymans, 7.
Mitrula palndosa, 28.
Morel, 17, 63.
Moulds, 2, 16, 19.
Moxa, 65.
Mueedines, 16, 20.
Mueor nitens, 19, 29.
Mucorini, 21.
Museardine, 70.
Mushroom, as a type, 3, 45.
--- eosmopolite, 36.

- eonsidered commercially. eultivation of, 78.
——on lawns, 79.

Mycology, 2.
Myxogastres, 14, 21, 26, 47, 84.
26.

Nectria cinnabarina, 16,18 .

- inaurata, 51.

Nidulariei, 14, 21.
Nostoc, 3.
Nyctalis, 59.
Oidium fructigenmm, 40.
Onygenci, 19, 21.
Penicillium iu amber, 38.
-_- glaucum, 46.

- - rosc-coloured, 31.

Peridium, 12.
Perisporiacei, 19, 21.
Perisporium, 19.
Perithecium, 14.
Peronospora, 44.
Peziza, 17, 18, 87.
—— æruginosa, 48, 67.

- venosa, 17.

Phacidiacei, 18, 21.
Phacidium, 18.
Plınogams resembling Fungi, 24.
Phalli, 11, 12.
Plialloidei, 11, 21.
Phallus, 47, 87.
Pliragmotrichacei, 15, 21.
Phycomyces, 30.
Physomycetes, 17, 21.
Pileus, 3.
Pilz, 2.
Pistillaria, 58.
Podaxinei, 11.
Podisoma, 86, 87.
Polyactis, 44.
Polyporei, 7, 20.
Polypori, $24,36,42,57$.
Polyporus of birch, 1.
_of walnut and ash, 1.
—————betulinus, 67.

- - fomentarius, 65.

Polyporus fraxineus, 43.
————nispidus, 7, 43.
—— igniarius, 7,66 .
-_ lucidus, 38.
--- officinalis, 65.
sacer, 67.
Schweinitzii, 23.
squamosus, $7,42,59,71$.

- tuberaster, 58, 80.
versicolor, 7.
Polycystis Violæ, 53.
Polysaccum, 23.
———— crassipes, 66.
Psilopezia, 87.
Pucciuixi, 15, 21.
Puff-balls, 11, 12.
———, starry, 12.
Pycnidia, 50.
Rafllesia, 39.
Rafllesiacei, 24.
Resupinate, 5.
Reticularia maxima, 13.
Rhytisma accrinum, 18.
Rhizomorpla, 57.
-_ subcorticalis, 42.
Russulæ, 47.
Rust, 74.
Sapballs, 2.
Saprolegnia, 53.
Sarcina, 69.
Sareodc, 23.
Schizophyllum commune, 80.
Schwamm, 2.
Sclerodcrina, 12.
Sclcrotium, 58.
\longrightarrow _ development of, 58.
Seperlonici, 16, 21.
Silkworms, diseased, 70.
Surut, 74.
Spawn, barren, 43, 52.
-_persistent in pliuts, 53.
- productive of discusc, 71.

Spermogonia, 51.

Spermatozoids, 51.
Sphæria herbarum, 29.
———. Hypoxylon, 18.
Sphæriacei, 18, 31, 42.
Sphærobolus stellatus, 14.
Sphæronema, 15.
Sphæronemei, 15, 21.
Spieules, 49.
Sporangium, 17, 19, 49.
Spores, 3, 4, 10, 45, 49.
—— sometimes abortive, 59.
Sporidia, $10,17,44,49$.
-- sometimes abortive, 59.
———, variations of, 56.
Sporophores, 10, 49.
Sporotrichum, 86.
Spumaria mucilago, 13.
Stereun, 9.
-- hirsutum, 8.
-- purpureum, 8.
Stillbueci, 16, 21.
Stilbum, 46.
Stylospores, 50.
Thelephora, 9, 87.
-- sobreea, 87 .
linea tonsurans, 69.

Torulacei, 15, 21.
Tremella, 87.
Tremellini, 10, 20, 86, 87.
Trichia, 26.
Trichogastres, 12, 21.
Trichoseytale paradoxa, 36.
Trufles, 11, 18, 63.
——, cultivation of, 77.
Tuber æstirum, 77.
———melanosporum, 77.
--- mesentericum, 77.
Tuberacei, 18, 21.
Tubercularia, 16.
Tympanis, 87.
Uredines, $86,87$.
Vaucheria, 44.
Verticillium, 44.
Vesiculiferi, 49.
Vibrissea truncorum, 58.
Vinegar-plant, 68.
Volva, 4.
Yeast, 2, 64, 66.
---, inoculation with, 70.
-- plant, 45, 64.
Xylaria, 47, 42.

INDEX TO GENERA AND SPECIES.

Acremonium, 353.
altcrnatum, 354.
fuscum, 354 .
verticillatum, 354.
Acrostalagmus, 408. cinnabarinus, 408.
Acrospermum, 317.
compressum, 317.
graminum, 317.
Actinonema Cratragi, 346.
Actinothyrium, 315.
graminis, 315.
Ficidiacei, 336.
EFidium, 336.
albescens, 337.
Allii, 336.
Ari, 336.
Asperifolii, 337.
Behenis, 337.
Berberidis, 337.
Bunii, 337.
Calthæ, 337.
Compositarum, 337.
crassum, 337.
Epilobii, 337.
Euphorbix, 337.
Galii, 337.
Gcranii, 337.
Grossularie, 337.
lencospermum, 337.
Menthre, 336.
Orobi, 337.
Pedicularis, 336.
Periclymeni, 337.
Primule, 336.
quadrifidum, 337.
Ranunculaccarum,337. rubcllum, 336.
Soldanelle, 336.

Ficidium-continued.
Thalictri, 337.
Tragopogonis, 337.
Urticæ, 337.
Valerianacearum, 337.
Violæ, 337.
Egerita, 342.
candida, 342.
Fthalium, 306.
septicum, 306.
vaporarium, 306.
Agaricini, 89.
Agaricus, 89.
acerbus, 105.
accrosus, 137.
acertatus, 119.
acicula, 127.
acicula, 120.
acute-squamosus, 93.
adiposus, 151.
Adonis, 123.
æruginosus, 168.
cruginosus, 168.
albellus, 104.
albo-brunncus, 98.
albo-cyancus, 168.
albus, 105.
alcalinus, 125.
algidus, 138.
alvcolus, 163.
appendiculatus, 170.
applicatus, 139.
applicatus, 138.
aratus, 176.
ardosiacus, 1.44.
arcolatus, 172.
arvensis, 166.
asper, 91.
asper, 93.

Agaricus-continued.
asprellus, 147.
atomatus, 176.
atratus, 120.
atro-albus, 124.
atro-cæruleus, 138.
aurantio-fervugineus, 196.
aurcus, 149.
auricomus, 155.
aurivellus, 150.
Babingtonii, 148.
Badhami, 93.
balaninus, 121.
Bclix, 134.
bellus, 113.
bifrons, 173.
blandus, 107.
Bloxami, 143.
bombycinus, 139.
borealis, 104 .
brevipes, 107.
brumalis, 112.
bufonius, 102.
bullaceus, 172.
butyraccus, 115.
byssisedus, 165.
callosus, 172.
calopus, 223.
campancllus, 133.
campanulatus, 175.
campestris, 165.
cauptopliyllus, 133.
candicans, 109.
candicans, 109.
Candollianus, 170.
capillaris, 130.
carneo-albus, 146.
саиncus, 103.

Agaricus-continued.
cartilagincus, 101.
Ceciliæ, 92.
Centunculus, 159.
cepæstipes, 95.
ccrnuus, 171.
certinus, 141.
cerussatus, 108.
chalybxus, 147.
cheledonius, 127.
chimonophilus, 164.
chionens, 139.
chrysophæus, 142.
cincrascens, 106.
cirrhatus, 117.
clarus, 110.
clavus, 120.
clypeatus, 144.
elypeolarius, 94.
Columbetta, 99 .
comosus, 150 .
compressus, 115, 200.
concinuus, 115.
confertus, 163.
confluens, 116.
conigenus, 117.
conissans, 169.
conopilus, 173.
constrictus, 96.
coprophilus, 172.
corrugis, 173.
corrugis, 175.
corticola, 129.
corticolu, 159.
costatus, 145.
crotaceus, 167 .
cristatus, 94.
crocatus, 127.
crucutus, 127.
crustuliniformis, 157.
Cucumis, 159.
cuncifolius, 101.
Currcyi, 155.
cyathiformis, 111.
cyphellæformis, 138.
dealbatus, 109.
depluens, 165.
difformis, 112.
dispersus, 169.
disseminatus, 176. disseminatus, 180. dissilicns, 125.
dryinus, 134.
dryophilus, 119.

Agaricus-continued. dryophitus, 118. durus, 149.
echinatus, 167.
ectypus, 112.
clegans, 121.
elixus, 109.
Elodes, 143.
cmbolus, 163.
epiptcrygius, 128.
equestris, 97.
erinaceus, 161.
esculcntus, 118.
euchrous, 146.
cuosmus, 135.
cxcclsus, 91.
cxcoriatus, 92.
exsculptus, 119.
exsuccus, 206.
fascicularis, 169.
fastigiatus, 155.
fastigiatus, 156.
fertilis, 142.
fibrillosus, 173.
fibrosus, 15.1.
Fibula, 133.
filopes, 126.
fimbriatus, 174.
fimicola, 175.
fimiputris, 17.1 .
flaccidus, 111.
flammans, 151.
flavidus, 158.
flaro-brumene, 98.
flocculosus, 154.
Fanisccii, 171.
frumentaceus, 144.
fucatus, 97.
fulvellus, 98.
fumosus, 107.
fumosus, 103.
furfuraccus, 161.
furfuraceus, 174.
fusipes, 115.
galericulatus, 124.
gallinaceus, 109. galopus, 128. gambosus, 104. gambosus, 101, 296. gangrcenosus, 103. geopliyllus, 156. gcotrupus, 110. giganteus, 110. glandulosus, 136.

Agaricus-continued.
gliodermus, 95.
gossypinus, 174.
gracilentus, 93 .
gracilis, 176.
graminum, 222.
grammopodius, 106.
grammopadius, 106.
granulosus, 95.
graveolens, 101, 103 104.
grisens, 183.
haustellaris, 164.
helvelloides, 132.
hepaticus, 131.
hiascens, 176.
Hobsoni, 138.
Hookeri, 154.
horizontalis, 159.
humilis, 100.
hybridus, 158.
hybridus, 158, 159.
hydrophorus, 176.
hypnophilus, 139.
İуpnorum, 163.
imbricatus, 99.
immundus, 103.
inamonus, 102.
incauns, 147.
inconstans, 227.
infundibuliformis, 110.
ingratus, 116.
inopus, 158.
inomatus, 108.
inquilinus, 161.
integrellus, 134.
inversus, 111.
ionides, 103.
Tris, 123.
juncicola, 130.
luccatus, 113.
laccatus, 113, 132.
laceratus, 120.
lacerus, 154.
laccrus, 156.
lacteus, 123.
lacrymabundus, 170.
lampropus, 146.
lanuginosus, 153.
laricinus, 96.
lascivus, 102.
lateritius, 162.
Leightuni, 138.
lentus, 158.

Agaricus-continued.
lcouiuus, 14.2 .
Lercillianus, 152.
longicandus, 157.
longipes, 114.
Loreianus, 140.
lucifugus, 156.
luriclus, 99.
luteo-nlbus, 123.
luteus, 215.
maeulatus, 115.
Марра, 90.
marginatus, 151.
Marice, 93.
mastoideus, 93. mastrucatus, 138.
megalodactylus, 91.
melaleuens, 106.
melaspermus, 168.
meleagris, 101.
melinoides, 160.
melinoides, 163.
melleus, 96.
melleus, 98.
nembrauaceus, 177.
mesodactylius. 152.
metachrous, 112.
metachrous, 112.
mitis, 136.
mollis, 164.
monstrosus, 10 l .
mucidus, 96.
mundulus, 146.
muralis, 131.
murinaceus, 100.
murinaceus, 203.
muscarius, 90.
mutabilis, 151.
myeenoides, 152.
nanus, 141.
naueinns, 94.
natecinus, 167.
nebularis, 187.
necator, 201.
nietilans, 98.
niclorosus, 115.
noli-tangere, 174.
nuecus, 159.
nudus, 105.
obseurus, 15%
occllatus, 120 .
odorus, 108.
Oniscus, 131.
opacus, 110.

Agaricus-continued.
opacus, 108.
ostreatus, 135.
ostreatus, 136.
ovalis, 162.
paeliypliyllns, 101.
pantheriuus, 90.
pantherinus, 185.
papilionaeeus, 175.
parabolieus, 124.
parvulus, 140.
paseuus, 145.
pascuus, 147.
paupereulus, 125.
pediades, 160.
pelianthinus, 131.
pelianthinus, 122.
pellieulosus, 128.
persouatus, 105.
personatus, 190.
pctaloides, 136.
petasatus, 141.
Pezizoides, 165.
phalænarum, 175.
Phalloides, 89.
philonotis, 131.
phlebophorus, 141.
phlebophorus, 162.
phyllophilus, 109.
physaloides, 172.
pilipes, 129, 162.
Plaecnta, 143.
planus, 157.
platypliyllus, 114.
platyphyllus, 120, 273. plumosus, 152.
polygrammus, 124.
polystictus, 95.
porrigens, 137
portentosus, 97.
procox, 149.
procox, 168.
pratensis, 166.
procerus, 192.
prolifcrus, 123.
prunuloides, 143.
prunulus, 145.
pudicus, 150.
pullus, 116.
pumilus, 152.
ригритсия, 103.
purus, 122.
purus, 121.
pusillus, 140.

Agaricus-continued.
pyriodorus, 153.
pyxidatus, 130.
raeemosus, 118.
rachodes, 92.
radicatus, 114.
radicosus, 150.
ramentaceus, 96 .
ramentaceus, 101.
rclicinus, 152.
repandus, 143.
repandus, 155 .
repens, 114.
retieulatus, 152.
retirugis, 175.
rhodopolius, 145.
r hodopolius, 145.
rimosus, 155.
roridus, 128.
rosellus, 122.
rubeseens, 90.
Rubi, 164.
rubidus, 148.
rubro-marginatus, 122.
rufo-carncus, 148.
rufulus, 132.
rutilans, 99.
saliguus, 136.
salignus, 226.
saponaceus, 101.
scaber, 153.
scalpturatus, 101.
scalpturatus, 101.
seambis, 157.
sejuuctus, 97.
scmiglobatus, 169.
scmilanecolatus, 172.
scmiorbieularis, 160.
separatus, 174 .
scptieus; 137.
septicus, 139.
serieellus, 144.
scrieous, 14.5 .
serotinus, 136.
serrulatus, 14.6 .
setipes, 132 .
sctosus, 130.
silvaticus, 167.
silvicola, 166
sindonius, 156.
sinuatus, 143.
siparius, 161.
Souterbeii, 147.
spadiceo-griseur, 173.

Agaricus-continued.
spadieeus, 170.
sparteus, 163.
speeiosus, 141.
speireus, 126.
spermatieus, 98.
sphagnieola, 131.
squamosus, 168.
squamosus, 156.
stellatus, 132.
stereorarius, 168.
stercorarius, 172.
stipitarius, 116
striatulus, 139.
strobiliformis, 90.
strobilinus, 122.
stylobates, 129.
subinvolutus, 111.
sublateritius, 169.
subpalmatus, 135.
subpulverulentus, 107.
sulfureus, 102.
surrectus, 140.
Taylori, 140. tenacellus, 118. tenaeellus, 117.
tenellus, 126.
tener, 162.
tenerrimus, 129.
tenuis, 125.
terrens, 100 .
testaceus, 157.
treehisporus, 156.
treluulus, 137.
tuberosus, 117.
ulmarins, 134.
unbelliferus, 132.
umbelliferus, 132, 133.
umbrinus, 141.
undatus, 117.
vaecinus, 100.
raceinus, 166.
vaginatus, 91.
raporarins, 166.
variabilis, 164.
velutinus, 170 .
velutipes, 116.
vernicosus, 108.
vermus, 89.
versieolor, 167.
vervacti, 160.
viltaticus, 166.
vino.sus, 158.
viridis, 108.

Agaricus-continued. vililis, 126.
Vittadiui, 94. volvaceus, 140. vulgaris, 128. xanthopus, 118. xylophilus, 174.
Agyrium, 375. rufum, 375.
Ailographum, 380. amplum, 380.
Aleuria, 362.
Amanita, 80 .
Anylocarpus, 377.
eneephaloides, 377.
Angioridium, 307.
sinuosum, 308.
Anodermei, 241.
Antennaria, 406.
semiorata, 406.
Antennariei, 406.
Anthina, 338.
brunnea, 338.
flammer, 338.
flavo-virens, 338.
Aposphæria, 315.
neuta, 315.
complauata, 315 .
Apyrenium, 291.
lignatile, 291.
Aregma, 329.
acuminatum, 329.
bulbosum, 329.
graeile, 329.
mueronatum, 329.
obtusatum, 329.
Arcyria, 310.
cinerea, 310. inearnata, 310. punicea, 310. nutans, 310. ochroleuea, 310.
umbrina, 310.
Armillaria, 96.
Arthrinium, 346. sporophleum, 346.
Arthrobotryum, 342. atrum, 342.
Arthroderma, 357.
Curreyi, 357.
Artotroyus, 408.
Ascobolus, 374.
earneus, 374.
eilintus, 374 .

Ascobolus-continued.
furfuraecus, 374.
glaber, 374.
sneelnarinus, 374.
Trifolii, 374.
vinosus, 374.
Ascochyta, 320.
Dianthi, 320.
pallor, 320.
Pisi, 320.
rufo-maculaus, 320.
Ascomyces, 376.
bullatus, 376.
deformans, 376 .
Juglandis, 376.
Trientalis, 376.
Ascomycetes, 357.
Ascotricha, 405. chartarum, 405.
Aspergillus, 347.
aurens, 348.
eandidus, 347.
dubius, 317 .
glancus, 317.
mollis, 348.
roseus, 348.
Tirens, 318.
Asterina, 380.
Babingtonii, 381.
Asteroma, 321 .
Brassica, 401.
Padi, 322.
Pruncllx, 321.
retieulatum, 321.
Rose, 322.
Ulini, 321.
Veronice, Desm., 322.
Asterosporium, 324 .
Hoffinami, 324.
Athelia epiphylla, 276.
Typhce, 276.
Atractium, 340.
flammeum, 3:10.
flammerm, 340.
Alractobolus ubiquilarius, 312.
Auricularia, 272.
cinerea, 271.
elegans, 270.
hepatica, 271.
lobata, 272.
mescuteriea, 272.
Auricularini, 265.

Bactridium, 326.
atrovirens, 326.
flayum, 326.
Helvellæ, 326.
Badhamia, 308.
fulvella, 308.
hyalina, 308.
nitens, 308.
pallida, 308.
utricularis, 308.
Balsamia, 378. platyspora, 378.
Batarrea, 299.
phalloides, 299.
Bispora, 326.
monilioides, 327.
Bolbitius, 182.
Boltonii, 182.
fragilis, 182.
tener, 183.
titnbans, 182.
titubans, 183.
Bolacotricha, 352. grisea, 353.
Boletus, 229.
estivalis, 234 .
alutarius, 235.
badius, 231.
boviuus, 230.
calopus, 233.
eastancus, 236.
ehrysenteron, 232.
cyanescens, 236.
edulis, 234.
elegans, 229.
crythropus, 233.
felleus, 236.
flavus, 230.
granulatus, 230 .
impolitus, 234.
laricinus, 230.
luridus, 233.
lutcus, 229.
luteus, 230.
olivaccus, 233.
pachypus, 233.
parasiticus, 231.
piperatus, 231.
purpureus, 234.
sanguincus, 231.
Satanas, 233.
seaber, 235.
strixpes, 232.
subtomentosus, 232.

Boletus-continzed. variegatus, 231. versipellis, 235. viscidus, 235.
Botryosporium, 354. diffusum, 354. pulchrum, 354.
Botrytis, 348. eitrina, 348. Jonesii, 348. terrestris, 348. Tilletii, 348.
Bovista, 301. nigreseens, 301. plumbea, 301.
Bulgaria, 374. inquinans, 375. sarcoides, 375.

Calocera, 284. cornea, 284. glossoides, 284. tuberosa, 284. viscosa, 284.
Calycella, 372.
Camptoum, 374. curvatum, 374.
Cantharellus, 215. aurantiaeus, 215. Brownii, 215. cibarius, 215. cincreus, 216. infundibuliformis, 216. lobatus, 217.
lutescens, 216.
muscigenus, 217. retirngus, 217. tubxformis, 216. tubaformis, 216. umbonatus, 216.
Cenangium, 374. Aucuparie, 374. Cerasi, 374.
ferruginosum, 374.
fuliginosum, 374.
Prunastri, 374.
pulveraceum, 374.
quercinum, 374.
Ribis, 371 .
Rubi, 37.1.
Capnodium, 403. elongatum, 403.
Ccnococcum, 30 . gcoplilum, 304.

Cephalotrich um, 3:14. curtum, 34.
Ceratium, 338. hydnoides, 338.
Ceratostoma, 402. eaprinum, 402. Zobelii, 402.
Ceuthospora, 323.
Lauri, 323.
Phacidioides, 323.
Chætomium, 405.
chartarum, 405.
elatum, 405.
glabrum, 405.
Chretopsis, 353.
Wauchin, 353.
Cheirospora, 325.
botryospora, 325.
Choiromyces, 377.
meandriformis, 377.
Cladotrichum, 345. triseptatum, 345.
Cladosporium, 346.
brachormium, 346.
dendriticum, 346.
depressum, 346.
fumago, 346.
herbartum, 31.6.
herbarum, 3.16.
lignicolum, 346.
nodulosum, 346.
orbiculatum, 346.
Clavaria, 278.
abictina, 280.
acuta, 283.
amethystina, 279.
Arclenia, 283.
argillacea, 282.
auren, 280.
Botrytis, 278.
ceranoides, 282.
cinerea, 279.
cinerea, 280.
contorta, 283.
coralloides, 279.
crispula, 281.
eristata, 280.
crocen, 280.
fastigiata, 279.
fastigiata, 279.
flaceidn, 280.
firagilis, 283.
fusiformis, 281.
grisea, 281.

Clavaria-continued.
inæqualis, 282.
juncea, 283.
Kunzei, 280.
muscoides, 279.
pistillaris, 283.
purpurea, 281.
rosca, 281.
rugosa, 280.
stricta, 281.
stricta, 273.
tenuipes, 282.
umbriua, 279.
uucialis, 284.
vermiculata, 282.
Clavariei, 278.
Clinterium, 316. obturatum, 316.
Clitocybe, 107.
Clitopilus, 145.
Clonostachys, 351 .
Araucaria, 354.
Coleosporium, 333.
Cainpanulre, 333.
Petasitis, 333.
pinguc, 333.
Rhinanthaccarum, 333.
Souchi-ar-vensis, 333.
Tussilaginis, 333.
Collybia, 114.
Coniomycetes, 313.
Coniomycetes, 355.
Coniothecium, 327.
amentacarum, 328.
betulinum, 328. effusum, 327.
Coniothyrium, 313.
glomeratum, 313.
Conoplea cinerea, 326.
Coprinarius, 174.
Coprinus, 177.
apthosus, 178.
atramentarius, 177.
atramentarius, 180.
comatus, 177.
comatus, 177.
deliquescens, 180.
domesticus, 181.
ephemcrus, 181.
extinctorius, 178.
fimetarius, 179.
fuscescens, 178.
hemcrobius, 182.
Hendersonii, 180.

Coprinus-conlinued. lagopus, 179. luridus, 178.
macrocephalus, 180.
micaceus, 179.
niveus, 179.
nychthemerus, 181.
picaceus, 178.
plicatilis, 181.
radiaus, 179.
radiatus, 181.
radiatus, 357.
Spraguei, 182.
sterquiliuus, 177.
tomentosus, 179.
Cordiceps, 381.
alutacea, 352.
capitatr, 382.
entomorrhizu, 382.
gracilis, 382.
ophioglossoides, 382.
purpurea, 382.
microcephala, 352.
militaris, 382 :
myrinceophila, 382.
ригригса, 351.
Corticium, 272.
arachnoideum, 273. arachnoideum, 276.
atrovirens, 274.
Amrora, 276.
cervleum, 274.
calceum, 274.
calceum, 276.
cincreum, 275.
comedens, 276.
confluens, 276.
gigautcum, 272.
incarmatum, 275.
lactescens, 274.
lacteum, 273.
lividum, 275.
lere, 273.
miniatum, 274.
nudum, 276.
nudum, 288.
ochraceum, 275.
polygouium, 276.
quercinum, 275.
roscum, 273.
Sambuci, 276.
Sambuci, 275.
sanguincum, 273.
sulfurcum, 274.

Corticium-continucd.
velutinum, 273.
Corlinarii, 149, 183.
Cortinarius, 183.
acutus, 195.
anfractus, 184 .
anomalus, 190.
araneosus, 190.
arcnatus, 188.
armeniacus, 193.
armillatus, 192.
bolaris, 188.
brumneus, 192.
bulbosus, 191.
Bulliardi, 187.
cervescens, 185.
callisteus, 187.
callochrous, 185.
caninus, 189.
caperatus, 183.
castancus, 194.
cinnamomeus, 190.
colliuitus, 186.
collinitus, 187.
cyanopus, 184.
diabolicus, 189.
dilutus, 194.
clatus, 186.
evcrnius, 191.
gentilis, 192.
glaucopus, 184.
hinnulens, 192.
ilcoporlius, 193.
Krombholzii, 194.
lencopus, 194.
teucopus, 194.
limonius, 192.
livido-ochraceus, 186.
multiformis, 184.
ochrolcucus, 189.
periscclis, 193.
pholideus, 188.
phuvius, 195.
prasinus, 186.
psammocephalus, 193.
purpurascens, 185.
raphanoides, 191.
Recdii, 194.
scaurus, 186.
spilomeus, 190.
sublanatus, 188.
tabularis, 189.
turbinatus, 185.
uliginosus, 190.

Cortinarius-continued. varius, 183.
violaceus, 187. violaceus, 190.
Coryneum, 324.
compactum, 324.
disciformc, 324.
Kunzei, 324.
microstichum, 324.
pulvinatum, 324.
Craterellus, 265.
cornucopioides, 266.
crispus, 266.
lutescens, 265.
simnosus, 266.
Craterium, 308.
lcucocephalum, 308.
minntum, 308.
mutabile, 308. pedunculatum, 308. pyriforme, 308.
Crepidotus, 163.
Cribraria, 309. intermedia, 309.
Crucibulum, 312. vulgare, 312.
Cryptosporium, 315. Caricis, 315.
Ncesii, 315.
Cyathus, 311.
striatus, 312.
vernicosus, 312.
Cynophallus, 298.
caninus, 298.
Cyphella, 277.
capula, 278.
cuticulosa, 278.
galcata, 277.
Goldbatschii, 278.
grisco-pallida, 277.
lacera, 277.
muscioola, 277.
muscigena, 277.
ochrolcuca, 277.
Cylindrosporium, 351 .
Cystopus, 334 .
candidus, 334 .
Cystotricha, 320. striola, 320.
Cytispora, 322.
carphospernia, 322.
chrysosperma, 322.
fugax, 322.
guttifcra, 322.

Cytispora-contimued. Hendcrsonii, 322.
Pinastri, 322.
rubcscens, 322.
Dacrymyces, 290. chrysocomus, 291. dcliquescens, 291. deliquescens, 291. stillatus, 291. stillatus, 291. violaceus, 290.
Dactylium, 351. dendroides, 351. fumosum, 343. macrosporum, 351. oboratum, 351. pyriferum, 351. roseum, 351. splırocephalum, 351. tenuissimum, 351. tencllum, 351.
Dædalea, 254. confragosa, 254. latissima, 254. quercina, 254. unicolor, 254.
Darluca, 318. filum, 318. macropus, 318. typhoidcarum, 318.
Dasyscypha, 368.
Dematiei, 342.
Dendryphium, 342.
comosum, 342.
curtum, 34%.
fumosum, 343. griseum, 343. laxum, 343.
Dermini, 149.
Dermocybe, 189.
Diachea, 308. elegans, 308.
Diatrype, 387. aspcra, 388.
Badhami, 388. bullata, 387. ceratosperma, 388. cincta, 389. corniculata, 389. dccipicus, 389. denigrans, 388. disciformis, 388. dryophila, 388.

Diatrype-continued.
clcvata, 388.
faracea, 388.
fcrruginea, 388.
flavovirens, 388.
Hystrix, 388.
inæqualis, 388.
incarcerata, 388.
lanciformis, 388.
lata, 388.
leioplaca, 388.
nucleata, 388.
podoides, 388.
pyrhocystis, 388.
quercina, 388.
scabrosa, 388.
sordida, 388.
stigma, 388.
stipata, 388.
strumclla, 388.
rarians, 388.
verrucxformis, 388.
Ulicis, 388.
undulata, 385.
Dichæna, 403.
rugosa, 403.
strobilina, 403.
Dictydium, 309. umbilicatum, 309.
Dictyosporium, 328. clegaus, 328.
Diderma, 306.
Carmichaelianum, 306.
citrinum, 306.
contextum, 306.
cyanescens, 306.
deplanatum, 306.
floriforme, 306.
globosum, 306.
nitens, 306.
spumarioides, 306.
Trevelyani, 306.
umbilicatum, 306 .
vernicosum, 306.
Didymium, 307.
cincreum, 307. congestum, 307. dxdalcum, 307.
farinaceum, 307.
furfuraccum, 307.
hemisphrricum, 307.
lcucopus, 307.
lobatum, 307.
melanopus, 307.

Didymium-continued. nigripes, 307. pertusum, 307. physaroides, 307. scrpula, 307. Sowerbcii, 307. squamulosum, 307. tigrinum, 307. xanthophus, 307 .
Dinemasporium, 321. graminum, 321.
Diplodia, 317.
arbuticola, 317.
caspitosa, 317.
confluens, 317.
consors, 317.
Cowdellii, 317.
fibricola, 317.
ilicicola, 317.
Ilicis, 317.
mutila, 317.
oospora, 317.
paupercula, 317.
tecta, 317.
viticola, 317.
vulgaris, 317.
Discella, 322. abnormis, 323. carbonacea, 323. Desmazierii, 323. microsperma, 323. platyspora, 323.
Discina, 362.
Discomycetes, 376 .
Discosia, 318. alnea, 318.
Ditiola, 291. radicata, 291. nuda, 291.
Dothidea, 391.
betulina, 391.
Caricis, 392.
filicina, 391.
fulva, 391.
Graminis, 391.
Heraclci, 391.
Johnstoni, 392.
Junci, 391.
Piggoti, 391.
Podagıarix, 391.
ribesia, 391.
Rosæ, 391. rubra, 391. striæformis, 391.

Dothidea-continued. tetraspora, 391. Trifolii, 391. Ulmi, 391.
Dothiora, 316. pyrcnophora, 316. splnæroides, 316.

Eccilia, 148.
Echinobotryum, 328. atrum, 328.
Elaphomyces, 378. autheracinus, 378. granulatus, 378. muricatus, 378. varicgatus, 378.
Elvellacei, 358.
Encoelia, 366.
Endodromia, 408. vituca, 4.08.
Endogone, 408. lactillua, 409. pisiformis, 409.
Endophyllum, 337. Sempervivi, 337.
Enerthenema, 309. clegans, 309.
Endothia, 38\%. gyrosa, 384.
Entoloma, 142.
Epicoccum, 341.
Equiscti, 341.
neglectum, 341.
Epochnium, 356.
fungorum, 327.
macrosporoidcum, 356.
Ergotclia, 351.
Eriospora, 323.
lcucostoma, 323.
Erysiphe, 405.
communis, 405.
graminis, 405.
lamprocarpa, 405.
Linkii, 4.05.
Martii, 405.
Montagnei, 405. tortilis, 405.
Eurotium, 405. herbariorum, 405.
Eustictis, 375.
Excipula, 321.
clıætostroma, 321.
fusispora, 321.
macrotricha, 321.

Excipula-continucd. strigosa, 321.
Exidia, 289. glandulosa, 289.
recisa, 289.
saccharina, 289.
Fibrina, 370.
Fistulina, 257.
hepratica, 257.
hepatica, 135, 240.
Flammula, 157.
Fusarium, 341.
lateritium, 341.
roseum, 341.
tremelloides, 341.
Fusidium, 351.
album, 352.
flavovirens, 352. griscum, 352.
Fusisporium, 355.
atrovireus, 355.
aurantiacum, 355.
bacilligcrum, 355 .
Betæ, 355.
fooni, 355.
Georginæ, 355.
iusicliosum, 355 .
roseolum, 355.
Solani, 342, 351.
Solani-tubcrosi, 356.
udum, 355.
Galera, 162.
Gasteromycetes, 292.
Geaster, 299.
Bryantii, 300.
coliformis, 299.
fimbriatus, 300 .
fimbriatus, 301.
fornicatus, 299.
hygrometricus, 301.
limbatus, 300.
mammosus, 300 .
rufescens, 300.
rufescens, 300.
striatus, 300.
Genea, 378.
Klotzschii, 378.
papillosa, 378.
verrucosa, 378.
Geoglossum, 361.
atropurpureum, 361.
diflorme, 362.
glabrum, 362.

Geoglossum-contimued.
glutinosum, 362.
hirsutum, 362.
olivaceum, 361.
viricle, 361.
vivide, 361.
Geopyxis, 365.
Gibbera, 402.
pulicaris, 403.
Saubinetii, 403.
Taccinii, 403.
Gloosporium, 325.
concentricum, 325 .
fructigenum, 325.
labes, 325.
læticolor, 325.
Gomphidius. glutinosus, 196.
gracilis, 196. viscidus, 196.
Conatobotrys, 354. simplex, 354.
Gonatosporium, 346. puccinioides, 347.
Gonytrichum, 353. cxsium, 353.
Grandinia, 264. granulosa, 264. granulosa, 265.
Gymnosporangium, 330.

Juniperi, 330.
Gymnosporium, 328. Arundinis, 328.
Gyrornitra, 358. esculenta, 358.

Haplaria, 349. grisea, 349.
Haplographium, 343. celicatum, 343.
Hebelorma, 152.
Helicoma, 345. Mulleri, 345.
Helicosporium, 326. pulvinatum, 326 . vegctum, 326.
Helminthosporium, 344.

Clavariarum, 315. delicatulum, 355. folliculatum, 3.t. fusisporium, 344 .

Helminthosporiumconlinued.
macrocarpuin, 344.
nanum, 344.
oboratum, 345.
Roussclianum, 344.
simplex, 344.
Smithii, 344.
sticticum, 345.
subulatum, 344.
Tilixe, 344.
turbinatum, 345.
velutinum, 344.
Helotium, 371.
aciculare, 371.
acuum, 37 .
æuginosum, 372.
agaricinum, 371.
Aspegrenii, 372.
Buccina, 372.
calyculus, 372.
citrinum, 372.
claroflavum, 372.
conigenum, 372.
cribrosum, 372.
epiphyllum, 372.
fagincum, 372.
fibuliforme, 371.
flavescens, 372.
herbarum, 372.
lenticulare, 372.
lutesecns, 372.
Marchantix, 372.
ochraceum, 372.
pallescens, 372.
phascoides, 372.
punctatum, 372.
salicellun, 372.
sclerotioides, 372.
scrotinum, 372.
subtile, 372.
subsessile, 372.
testaceum, 372.
tuba, 372.
versiforme, 372 .
virgultorum, 372.
Helvella, 358.
crispa, 359.
clastica, 359.
cphippinm, 359.
lacunosa, 359.
sulcala, 359.
Hendersonia, 317.
arcus, 318.

Hendersonia-continued.
elegans, 317.
fibriseda, 318.
macrospora, 317.
mutabilis, 318.
oreades, 318.
polycystis, 318.
Stephensii, 318.
Hercospora, 402. pupula, 402.
Heterosphæria, 379. patella, 379.
Hirneola, 289. auricula-Judæ, 289.
Humaria, 366.
Hydnangium, 293. carotrecolor, 293.
HIydnei, 257.
Hydnobolites, 377.
cerebriformis, 378.
Fiydnotrya, 377. Tulasnci, 377.
Hydnum, 257.
alutaceum, 260.
auriscalpium, 258.
barba-Jovis, 263.
caput-Medusæ, 259.
compactum, 258.
coralloides, 259.
erispum, 262.
erinaceum, 259.
farinaccum, 261.
fcrruginosum, 260.
fuscum, 260.
gelatinosum, 259.
graveolens, 258.
imbricatum, 257.
membranaceum, 260.
membranaceum, 261.
niveum, 261.
ochraccum, 259.
plumosum, 261.
repandum, 258.
rufescens, 258.
spathulatum, 261. squalinum, 259. udum, 261.
variccolor, 269.
Wcinmanni, 260. zonatum, 258.
Hydrophora, 407. stereoren, 408. tenerrima, 407.

Hygrocybe, 193.
Hygrophorus, 197. agathosmus, 198. aromaticus, 198. calyptrxformis, 202. ceraccus, 201. cerasinus, 197. chrysodon, 197. coccincus, 201.
Colemannianus, 200.
conicus, 202.
conicus, 202.
distans, 200. cburncus, 197. fusco-albus, 198. hypothejus, 198. lxtus, 200. leporinus, 199. mesotephrus, 198. miniatus, 201. murinaccus, 203. murinaceus, 100. niveus, 199.
obrusscus, 202. olivacco-albus, 198.
oviuus, 200.
ovinus, 115.
pratensis, 199.
psittacinus, 202.
puniceus, 201.
russo-coviaceus, 202. unguiuosus, 202.
unguinosus, 116.
virgineus, 199.
virgineus, 197.
Hymenochæte, 271.
corrugata, 272.
rubiginosa, 271.
tabacina, 271.
Hymenogaster, 295.
citrinus, 295.
decorus, 295.
decorus, 297.
Klotzschii, 295.
luteus, 295.
muticus, 295.
olivaccus, 296.
pallidus, 296.
pusillus, 297.
tencr, 296.
tener, 297.
Thwaitesii, 297.
vulgaris, 296.
Hymenomycetes, 89 .

Hymenoscypha, 370
Hymenula, 291.
punctiformis, 291.
Hypholoma, 169.
Hyphomycetes, 337.
Hypocrea, 383.
citrina, 383.
farinosa, 383.
floccosa, 383.
gelatinosィ, 383.
latcritia, 383.
luteo-virens, 383.
rufa, 383.
riccioidea, 383.
typhina, 383.
Vitalba, 383.
Hypocopra, 402.
Hypogrei, 292.
Hyporhodii, 139.
HIypospila, 392.
populiua, 392.
quercina, 392.
Hypoxylon, 385.
argillaceum, 387 .
atro-purpureum, 387.
coccineum, 386.
coccinerum, 357.
cohærens, 387.
concentricum, 386.
coprophilum, 386.
fuscum, 387.
gastrinum, 386.
lutcum, 386.
marginatum, 387.
multiforme, 386.
nummularium, 386.
rubiginosum, 387.
scrpers, 387.
succenturiatum, 386 .
udum, 387.
ustulatum, 385.
Hysterangium, 294.
nephriticum, 294.
Pompholyx, 294.
Thwaitesii, 294.
Eysterium, 380.
arundinaceum, 380.
Carmichaelianum, 380.
сотmuиe, 380.
conigenum, 380 .
culmigenum, 380. curvatum, 380.
elongatum, 380.
foliicola, 380.

EIysterium-continucd.
Fraxini, 380.
lineare, 380.
maculare, 380.
melalcucum, 380.
Pinustri, 380.
pulicare, 380.
Rubi, 380.
typhinum, 380.
Vaccinii, 380.
Illosporium, 34.1.
carncum, 341.
coccineum, 342.
corallinum, 342.
roseum, 341.
Inodermei, 248.
Inoloma, 187.
Institale, 357.
acariformis, 357.
cffusa, 357.
radiata, 357.
Irpex, 262.
candidus, 262.
Johnstoni, 262.
lacteus, 262.
obliquus, 262.
pendulus, 262.
Isaria, 338.
arachnophila, 338.
brachiata, 338.
citrina, 338.
farinosa, 338.
Friesii, 338.
intricata, 338.
puberula, 338.
Isariacei, 338.
Isothea, 392.
pustula, 392.
rhytismoides, 392.
saligna, 392 .
Ǩneiffia, 265.
setigera, 265.
Lachnea, 367.
Lachnella, 373.
工actarius, 203. acris, 207.
blcunius, 204.
camphoratus, 208.
chrysomheus, 206.
cilicioides, 203.
circcllatus, 204.

Lactarius - continued.
deliciosis, 206.
fuliginosus, 209.
glyciosmus, 209.
hysginus, 20%.
insulsus, 204.
mitissimus, 208.
pallidus, 207.
piperatus, 205.
plumbens, 205.
pyrogalus, 205.
quietus, 207.
quietus, 274.
rufis, 208.
serifluus, 207 .
subdulcis, 208.
theiogalus, 206.
theiogalus, 296.
torminosus, 203.
torminosus, 201.
turpis, 203.
uvidus, 205.
vellereus, 206.
vellereus, 210.
volemum, 207.
zonarius, 204.
Laquearia, 373.
sphreralis, 373.
Lasiobotrys, 403.
Linner, 40%.
Lonicerx, 401.
Lecythea, 334.
Baryi, 334.
caprearım, 334.
epitea, 334.
Euphorbix, 334.
gyrosa, 33•.
Lini, 334.
mixta, 334.
populina, 334.
Rosx, 334
Ruborum, 334.
saliceti, 334.
Vulerianæ, 334.
Lentinus, 224.
adherens, 225.
cochleatus, 226 .
cochleatus, 262.
Dunalii, 225.
flabelliformis, 226.
lepideus, 225.
tigrinus, 224.
tigrinus, 225.
vulpinus, 226.

Lenzites, 228.
abictina, 229.
betulina, 228 .
flaceicta, 228.
sepiaria, 228.
Ieotia, 360 .
infundiluliformis, 360 .
lubrica, $36^{\circ} 0$.
มaาล, 360.
Lepiota, 92.
Lepravia nigra, 327.
Leptonia, 146.
Leptostroma, 313.
caricinum, 313.
filicinum, 313.
juncinum, 313.
litigiosum, 313.
Sріrææ, 313.
vulgare, 313.
Leptothyrium, 314.
Fragariæ, 315. Jnglandis, 315.
Ribis, 315.
Ieucospori, 89.
Eicea, 311.
applanata, 311.
cylindrica, 311.
fragiformis, 311.
perreptans, 311.
Lophium, 381. clatum, 381. mytilinum, 381.
Lycogala, 304.
epidendrum, 305.
parietinum, 305.
Lycoperdon, 301. atro-purpureum, 302. celatum, 302. gemmatum, 302. giganteum, 302. pusillum, 302. pyriforme, 302. saccatum, 302.

Macrosporium, 345.
Brassicx, 3.45.
Cheiranthi, 345. concinuum, 345. sarcinula, 345.
Marasmius, 218. allinecus, 223. amadelphus, 221. androsaceus, 222. archyropus, 220.

MIarasmius-con-
tinued.
caudidus, 222.
epiphyllus, 224.
erythropus, 220.
foetidus, 221.
fusco-purpureus, 219
gruminum, 222.
hcematocephalus, 130.
Hudlsoni, 223.
insititius, 223.
oreades, 219.
oreades, 218-220.
perforans, 223.
peronatus, 218.
porreus, 219.
ramealis, 221.
rotula, 222.
rotula, 223.
saccharinus, 224.
scorodonius, 220.
spodoleucus, 224.
Stephensï, 220.
urens, 218.
Vaillantii, 221.
Wynnci, 219.
Massaria, 402.
fimeti, 402.
foedans, 402. inquinans, 402.
Melampsora, 333.
betulina, 334 .
Euphorbiæ, 333. populina, 334. salicina, 334.
Tremulæ, 334.
Melanconium, 323 .
bicolor, 324 .
magnmm, 324.
sphrrospermim, 324.

Melanogaster, 292.
ambiguts, 293. ambigutus, 295.
Broomeianus, 293.
intermedius, 293.
varicgatus, 293.
variegatus, 293.
Melasmia, 319.
necrina, 319. nlnea, 319.
Melogramma, 391 . fusisporum, 391.
homaleum, 391.
2

Melogramma-continued.
oligosporum, 391.
rubro-notatum, 391.
Menispora, 353.
lueida, 353.
Merulius, 254.
anrantiaeus, 256.
Curmiehaelianus, 256.
corium, 255.
corium, 273.
laerymans, 256.
molluseus, 255.
pallens, 25 ().
Porinoides, 255.
rufus, 255.
serpens, 255.
tremellosus, 255.
TMicropera, 322.
drupacearum, 322.
Microsphæra, 404.
Berberidis, 404.
Grossularix, 40%. penieillata, 404.
NMitrula, 360 .
cueullata, 360.
paludosa, 360.
Mollisia, 370.
Monilia, 351.
faseienlata, 351. ramosa, 351.
Monotospora, 34.
megalospora, 314.
splineroeephala, 34.
Morchella, 358.
esenlenta, 358.
patula, 358.
semilibera, 358.
Mucedines, 347.
Mycena, 121.
Myrothecium, 311.
roridum, 34.1.
Myxacium, 186.
Myxogastres, 301.
Myxormia, 321.
Myxormia, 357. atro-viridis, 321.
Myхоsporium, 325.
eollieulosum, 325.
orbiculare, 325.
paradoxum, 325.
Myxotrichum, 353. ehartarum, 353. deflexum, 353.

MIucor, 407.
amethysteus, 407.
caninus, 407.
elavatus, 407.
delieatulus, 407.
fusiger, 407.
Mueedo, 407.
Phyeomyees, 4.07.
ramosis, 407.
subtilissimus, 407 .
suecosus, 407.
tenerrimus, 407.
Mucorini, 407.
Myrothecium, 357.
Næmatelia, 290.
enecphala, 290.
nueleata, 240.
vireseens, 290.
Naucoria, 159.
Nectria, 393.
aquifolia, 393.
arenula, 394.
aurautia, 393.
Bloxami, 394.
einnabarina, 393.
соесіпеа, 393.
eueurbitula, 393.
episphrria, 391.
flavida, 393.
funieolu, 393. graminicola, 394.
Helminthieola, 394.
innurata, 393.
museivora, 39\%.
oelrracea, 393.
oehraceo-pallida, 394.
Peziza, 393.
Platasea, 393.
Pnrtoni, 394.
Ralfsii, 395.
rosella, 395.
Rousseliana, 394.
sanguinea, 393.
sinopiea, 393.
umbrina, 394.
Nemaspora, 325.
erocea, 325.
Rosx, 325.
Nematogonum, 348. aurantiacum, 348. aureum, 318.
Neottiosporia, 118.
Crricum, 118.

Nidulariacei, 311.
Nolanea, 147.
Nyctalis, 217.
asterophora, 217.
parasitica, 218.
Octaviania, 292.
asterosperma, 292.
Stephensii, 292.
Odontia, 264.
fimbriata, 264.
Edemium, 34. atrum, 344.
Oidium, 350. abortifaciens, 351 . æquivoeum, 351 . aureum, 350. Balsamii, 351. ehartarum, 350. coneeutrieum, 351. erysiphoides, 351. fascieulatum, 350. favorum, 351.
fructigenum, 350. fulvum, 350 .
Leucoconizm, 351.
monilioides, 351.
Porriginis, 350.
Tuckeri, 351.
Omphalia, 130.
Oomyces, 393.
enrneo-albus, 393.
Onygena, 406. apus, 406. equina, 406. piligena, 406.
Ophiotheca, 310.
ehrysosperma, 310.
Pachnocybe, 339.
acieula, 339 . albida, 339. grisea, 339. subuluta, 339 .
Pachyphlœus, 377. eitrinus, 377. eonglomeratus, 377. melanoxanthus, 377.
Panæolus, 174.
Panus, 226.
conehatus, 227.
styptiens, 227.
torulosus, 226.
Papulaspora, 354. sepedouioides, 354.

Patellaria, 373.
utrata, 373.
citrina, 373.
clavispora, 373.
cliscolor, 373.
livida, 373.
thabarbarina, 373.
Patellea, 371.
Paxillus, 195.
atrotomentosus, 195.
incolutus, 195.
involutus, 158.
panuoides, 196.
Pelastea, 371.
Penicillium, 350.
bicolor, 350. canclidum, 350. corcinium, 350. crustaceum, 350 . fasciculatum, 350 . roseum, 350. sparsum, 350 . subtile, 350 .
Perichæna, 311. abictina, 311. populina, 311.
Periconia, 313. calicioides, 343. glaucocephala, 343.
Peridermium, 336.
clatimun, 336 .
Pini, 336.
Periola tomentosa, 312, 356.

Perisporiacei, 403.
Perisporium, 403. Arundinis, 403. princeps, 403.
Peronospora, 348.
Peronospora, 408. arborescens, 319 . Arenarix, 315. curta, 349. destructor, 349. elfusa, 349. ganglioniformis, 349. grisea, 344. infestans, 349. macrospora, 319. parasitica, 319. parasitica, 318. Ulitisx, 349. Vicix, 319. violacea, 349.

Pestalozzia, 324. Guepini, 324.
Peziza, 362.
acetabulum, 362 .
ฉcuun, 36 S .
ulbo-spadicua, 368.
albo-testacca, 369.
albo-violascens, 368 .
amorpha, 369.
anomala, 369. apala, 369 . argillacen, 366. aspidincola, 369. atrata, 371. atro-virens, 370 . aurantia, 363. aurclia, 369. axillaris, 371. badia, 363.
Berkeleii, 369.
bicolor, 368.
Bloxami, 369.
bolaris, 370.
brunnea, 367.
Cacalix, 370.
cærulea, 368.
cresia, 369.
calycina, 368.
caucus, 370 .
caulicola, 368.
ccrea, 363.
cerinea, 368.
Chailletii, 371.
Charetiæ, 369.
ciborioides, 370 .
ciliaris, 368.
cinerea, 370.
clandestina, 368.
claro-flava, 372.
Clavariarum, 369.
clavus, 370.
coccinca, 367.
cochlcata, 363.
compressa, 371.
cornca, 371.
Cornubiensis, 365.
coronata, 370 .
corticalis, 368.
cribrosa, 372.
cupularis, 365.
Curveyi, 370.
cyathoidca, 370. douncstica, 369. cchinophila, 370.

Peziza-continued. cpisplıcria, 368.
erecta, 366.
criobasis, 369 .
crumpens, 371.
fasciculturis, 36\%.
firma, 370.
flexclla, 371.
fructigena, 372.
fusarioides, 371.
fusca, 369.
furfuracea, 366.
glumarum, 366 .
Godroniana, 368.
granulata, 366
Grevillei, 369.
helotioides, 372.
hemispherica, 367.
hispiclula, 368.
humosa, 366.
liyalina, 369.
millexa, 370.
Johnstoni, 369.
lecidiola, 371.
Ledi, 370.
leporina, 363.
lcucoloma, 366.
leucostigma, 371.
lignyota, 371.
livida, 368.
lutco-nitens, 36\%.
macropus, 365.
mасгория, 358.
Marchantia, 372.
melaloma, 366.
melanotheja, 371.
melastoinu, 367.
mclaxantha, 368.
micrometra, 371.
micropus, 364.
mutabilis, 369.
nitidula, 370 .
nivea, 368.
omplialocles, 366.
onotica, 363.
papillaris, 369.
Piggotii, 369.
Pineti, 369.
plano-umbilicata, 369.
Polytrichi, 366.
pustulata, 36%.
radiculata, 367 .
radula, 361.
Rapulum, 365.

Peziza-conlinued. repanda, 363.
Rose, 369.
rudis, 370.
rufo-olivacea, 368.
rutilans, 366.
sanguinea, 369. saniosa, 366.
Sclumacheri, 368.
seutellata, 368.
scpulta, 365.
siparia, 370.
sphærioides, 371.
stereorea, 368. straminuw, 369. striata, 370 . succosa, 363. sulphurea, 369. trechispora, 368.
tricolor, 368. tuberosa, 365. variccolor, 368. venosa, 362. villosa, 369. vinosa, 370. virginen, 368. vitellina, 368 . viridaria, 361. vesiculosa, 361 . vulgaris, 371. xanthostigma, 371.
Phacidiacei, 379.
Phacidium, 37!).
carbonaceum, 379.
coronatum, 379.
dentatum, 379.
Pini, 379.
repanclum, 379. Rubi, 379.
Taecinii, 379.
Phalloidei, 297.
Phallus, 297. impudicus, 297. iosmos, 298.
Phelonitis, 311. strobilina, 311.
Phialea, 370.
Phlebia, 263. contorta, 264. merismoides, 263. radiata, 263. radiata, 271. vaga, 264.
Phlegmacium, 183.

Phlyctæan, 323.
Jolnnstonii, '323.
vagabunda, 323.
Pholiota, 14.9.
Phoma, 313.
asteriscus, 314.
bicuspidatum, 314.
conceutreum, 314.
depressum, 314.
devastatrix, 314.
еріlеисим, 314.
eriophorum, 314. exiguum, 31.4.
fibrieolu, 314.
IIcderæ, 31ヶ.
inophilum, 314.
Lingam, 314.
longissimum, 314.
microseopicum, 314.
muciferun, 314.
nebulosnm, 314.
nothum, 314.
piccum, 314.
rachula, 31 .
Samarorum, 314.
sticlicum, 314.
ulnicola, 314.
Phycomyces nilens, 407.
Phyllactinia, 404. gutata, 404.
Physarum, 307.
ulbum, 307.
atrum, 307.
bulbiforme, 307.
hyalinum, 308.
lilacinum, 307.
metallicum, 307.
nutans, 307.
rubiginosum, 307.
utriculare, 308.
Physomycetes, 406.
Physonema, 33\%.
Pilacre, 356 .
faginea, 356.
Petcrsii, 356.
Pilidium, 318. accrinum, 318. carbonaecm, 319.
Pistillaria, 285. culmigena, 285. micans, 285.
pubcrula, 286. pusilla, 286. quisquiliaris, 286.

Placodermei, 24.
Pleurotus, 131.
Pluteus, 141.
Podisoma, 331.
foliicolum, 331.

- Juniperi-communis, 331.

Junipcri-Sabinæ, 331.
Podosporium, 331.
Polyangium, 312.
vitellinum, 312.
Polyactis, 350.
eana, 350 .
cinerea, 350.
fasciculata, 350.
vera, 350.
rulguris, 350.
Polyporei, 229.
Polyporus, 237.
abietinưs, 249. adiposus, 243. adustus, 243. alligatus, 241. amorphus, 243.
aneirinus, 252.
annosus, 217.
applanatus, 245.
Armeniacus, 250.
betulinus, 24.
bombycinus, 250.
brumalis, 237.
cessius, 242.
carpincus, $2 \cdot 13$.
ecrvinus, 247.
chioncus, 241.
cinctus, 250.
conchatus, 245.
comnatus, 248.
connatus, 251 .
eontignus, 249.
crispus, 213.
eristatus, 240.
cytisinus, 247.
destructor, 243.
dryadcus, 244.
clegans, 239.
ferruginosus, 24.9.
fibula, 248.
fomentarius, 215.
fragi. is, 24:2.
fraxincus, 247.
funosus, $2 \cdot 15$.
fuscidulus, 237.
gigantecus, 240 .

Polyporus-continued
Hervergii, 238.
leteroclitus, 211.
hispiclus, 243.
hybridus (see Addenda).
igniarius, 246 .
incarmatus, 250.
intybaceus, 240.
lcutus, 237.
leptoeephalus, 237 .
lucidus, 210 .
nuedulla-panis, 251.
medulla-panis, 248.
molluscus, 251.
nidulaus, 242 .
nigricans, 248.
nitidus, 250
nummularius, 239.
obducens, 251.
pallescens, 214 .
perennis, 238 .
picipes, 239.
purpureus, 250.
quercinus, 239.
radiatus, 248.
Ribis, 246.
Rostkorii, 238. rufescens, 238.
rutilans, 242. salicinus, 216 . salignus, 241. Schweinitzii, 238. scoticus, 248. spumeus, 214 . squamosus, 238. squamosus, 237. Stephensii, 252. subpileatus, 218. sulfureus, 241. terrestris, 252. ulmarius, 246. Vaillantii, 252. vaporarius, 252. varicgatus, 217. varius, 239. vegetus, 245. relutinus, 248. velutinus, 252. versicolor, 248. vitrcus, 251. vulgaris, 251. Wynnei, 249. zonatus, 215 .

Polycystis, 334 .
Colehici, 335. parallela, 335. Violæ, 335.
Polysaccum, 304. olivaceum, 304. pisocarpium, 304.
Polystictus, 253.
Polythrincium, 31.6. Trifolii, 316.
Poronia, 385. punctata, 385.
Porothelium, 556.
Fricsii, 257.
Pratelle, 165.
Propolis, 375.
Propolis, 376.
Prosthemium, 321.
betulinum, 321 .
Psalliota, 165.
Psathyra, 173.
Psathyrella, 176.
Psilocybe, 171.
Psilonia, 356. Arundinis, 356. gilva, 356. nivea, 356.
Psilopezia, 373.
Babingtonii, 373.
Puccinia, 329.
Egopodii, 330.
Ancmones, 330.
Asparagi, 329.
Betonieæ, 330.
bullaria, 330 .
Buxi, 330.
Calthæ, 330.
Campanulæ, 330.
Chrysosplenii, 330.
Cireææ, 330. clandestina, 330. compositar'um, 330. coronatu, 329 .
Epilobii, 330.
Frbæ, 330.
galiorum, 330.
Glechomatis, 329.
glomerata, 330.
gracilis, 329.
Uruminis, 3:9.
Lyelnuidearum, 330 .
Menthr, 329.
Polygonortum, 329.
Primula, 3こり.

Puccinia-continued.
Prunorum, 330.
pulvcrulenta, 330.
Rhodiolæ, 330.
Saniculæ, 330.
Saxifragarum, 330 .
Seorodonir, 330.
Scropluulariæ, 330.
Smyrnii, 330.
striola, 330 .
syngenesiarum, 330 .
truncata, 329.
umbclliferarum, 330 .
Umbiliei, 330.
Vaginalium, 329.
Valautire, 330.
variabilis, 330.
Veroniearum, 329.
Vincæ, 330.
Violarum, 330.
Pucciniæi, 328.
Pyrenophora, 402.
phæocomes, 402.
Rabenhorstia, 322.
rudis, 322.
Tiliæ, 322.
Radulum, 263.
orbiculare, 263.
quereinum, 263.
Reticularia, 305.
atra, 305.
maxima, 305.
umbrina, 305.
Rhinotrichum, 348.
Bloxami, 348.
Opuntia, 348.
Thwaitesii, 348.
Rhizopogon, 294. rubescens, 294.
Rhopalomyces, 354 . eanclidus, 355. pallidus, 355.
Rhytisma, 379. aeerinum, 379 . Andromedx, 379. maximuı, 379. punctatum, 379. salicinum, 37!. Urlicæ, 379.
Rcestelia, 336.
cancellata, 336. cornuta, 336 lacerata, 336 .

Russula, 209.
adusta, 209.
adusla, 218.
nlutacea, 214.
aurata, 213.
dccolorans, 211.
delica, 210.
depallens, 211.
elepluanlina, 210.
eineticn, 212.
footens, 213.
fcelens, 210.
fragilis, 213.
furcata, 210.
hetcrophylla, 211.
intcgia, 219.
lepida, 212.
lintea, 214.
nigricans, 209.
mitidn, 214.
ochroleuca, 212.
rosacea, 210.
rubra, 212.
sangninea, 210. sardonia, 211. resca, 211. virescens, 212. vitcllina, 215.

Sarcoscypha, 367.
Schizophyllum, 228. commulle, 228.
Scleroderma, 303. Bovista, 303. verrucosum, 303. vulgare, 303.
Sclerotium, 409.
Sepedoniei, 355.
Sepedonium, 355. chrysospermum, 355 . roseum, 355.
Septonema, 327. spilomeum, 327.
Septoria, 319. Aceris, 319. Fgopodii, 319. Badhami, 320. Conrolvali, 320. cornicola, 320. graminum, 320. Hederm, 320. heterocliron, 320. Hippocastani, 319. insularis, 320 .

Septoria-contimued.
Lepidii, 319.
lituns, 320.
nodorum, 319.
Oxyacantlie, 319.
Polygonorum, 320.
Populi, 320.
Ralfsii, 320.
rufo-maculans, 320 .
salicella, 319.
stemmaten, 320 .
thecicola, 320.
Ulmi, 319.
Sistotrema, 261.
conflucns, 262.
Spathularia, 360.
flavida, 360.
Sphæria, 394.
acervata, 396.
acmminata, 400 .
neus, 399.
amblyo.spora, 402.
anarithmu, 401.
angustilabra, 397.
anscrina, 398.
upiculata, 397.
apotheciorum, 396.
appendiculosi, 399.
aquila, 39%.
Argus, 398.
Arundinis, 397.
Ashwelliana, 399.
Aspegrenii, 396.
aucta, 398.
Avcllanx, 4.01. barbnla, 396.
Berberidis, 396.
Bcrkeleï, 398.
biformis, 391 .
Bombarda, 395. botryosa, 395.
brachythele, 396 .
Brassicr, 395.
brassicrecola, 401.
brunncola, 401.
bufonia, 398.
cæsia, 394.
callicarpa, 396.
callimorpha, 395.
calva, 395.
canescens, 395.
capillifera, 395.
carpinea, 401.
caudata, 396.

Sphæria-continued. celata, 398.
ccuthosporoides, 399
Chxtominin, 395.
ciliaris, 398.
cirrhosa, 397.
Clivensis, 100 .
clypcata, 399.
collabens, 396.
commanipula, 4()0.
coniformis, 400
conflucus, 395.
conformis, 399.
Corni, 398.
Comi-Snecice, 400.
Coryli, 401.
cruciferarum, 400. cupularia, 396.
culmifraga, 397.
Cmrıcyii, 396.
cnivirostra, 400.
deccdens, 39 S.
derasa, 400.
Desmazierii, 394.
Dickici, 394.
dioica, 396.
discutiens, 398.
dochmia, 398.
Doliolım, 400.
duplex, 401.
elongata, 397.
epidermidis, 399.
cpispheria, 391.
Erysiphina, 401.
Eres, 395.
Eryngii, 401.
eucrypta, 401.
eutypa, 397.
excipuliformis, 397.
cxilis, 395.
farcta, 398.
fibritecta, 397.
fimbriata, 400.
frondicola, 320 .
fuscellar. 399.
futilis, 399.

- Gigaspora, 398.

Glis, 398.
Ginmon, 401.
Godini, 397.
Hedercecola, 320.
Helenx, 400.
helicospora, 101.
hсиіtuplı, 397.

Sphzeria-continued. herbarum, 400.
herpotricha, 399.
hirsuta, 395.
hispidn, 395.
liypotcphra, 397.
inquiliun, 398.
innumern, 395.
intermixta, 399.
Jenynsii, 396.
Juglandis, 397.
Laburni, 396.
lampadophorn, 397.
lanata, $3 \cup 8$.
Leightoni, 401.
ligneoln, 397.
Ligustri, 401.
lineolata, 399.
livelln, 399.
livida, 397.
Loniceræ, 397.
Limariæ, 400.
macrostoma, 397.
macrotrichn, 395 .
maculxformis, 401.
macnlans, 399.
mammaformis, 395.
mastoirlen, 396.
melanotes, 397.
melina, 399.
Millcpunctatn, 398.
morlesta, 400.
moriformis, 395.
moroides, 396.
mutabilis, 39.1.
myriocarpa, 396.
nidula, 396.
nigerrima, 396.
nigrans, 400.
nigrella, 400.
nucula, 396.
obducens, 395.
obliterans, 395.
oblitescens, 399 .
occllata, 399.
Ogivicusis, 400.
Ostruthii, 401.
ovina, 395.
palustris, 401.
papaverea, 395.
pantlicrina, 399.
pardalota, 399.
pellita, 395.
perexigua, 395.

Sphzeria-continued. pertusn, 396.
phæosticta, 401.
pliacostrom, 394.
phomatospora, 398.
pilifcra, 397.
pilosa, 395.
Pinastri, 399.
planiuscula, 400
pœcilostoma, 396.
pomiformis, 395 .
populina, 396 .
pruinosィ, 398.
Pteridis, 401.
pulveracea, 396.
pulviscula, 396.
pulvis-pyrius, 395.
punctiformis, 401.
pusilla, 399.
quadrimucleata, 399.
Racodium, 394.
recutita, 401.
revelata, 399.
rlytidodes, 395.
rostellata, 400.
rubclla, 400.
Rubi, 399.
rubicola, 396.
Runicis, 401.
Rusci, 399.
snbuletorim, 401.
sulicella, 398.
scabra, 395.
scirpicoln, 398.
scoriadca, 397.
semilibera, 400.
setacen, 401.
siparia, 398.
sordaria, 395.
Spartii, 397.
spermoides, 395.
spiculosn, 398.
spinosa, 397.
stercoraria, 395.
strigosn, 395.
superficialis, 395.
Tamaricis, 399.
tencbrosa, 400.
thelena, 394.
Thwaitcsii, 100.
tomicun, 399.
tosta, 400.
tuistis, 391.
tritorulosn, 400.

Sphæria-continued.
triviulis, 399.
tubrformis, 401.
unicaudata, 398.
Vectis, 400. vclata, 398.
vesticola, 396. vibratilis, 398. rilis, 396.
Xylostei, 398.
Zobelii, 402.
Sphæriacei, 381.
Sphrerobolus, 312.
stellatus, 312.
Sphæronema, 315.
epimyces, 315.
leucoconium, 315.
subulatum, 315 .
vitrcum, 315.
Sphæronemei, 313.
Spheropsis, 316.
Alismatis, 316.
arundinacen, 316.
atro-vircns, 316.
Candollci, 316.
cylindrosporn, 316.
cpitricha, 316.
geniculata, 316.
leucostigma, 316.
malorum, 316.
menispora, 316.
mutica, 316.
parca, 316.
Ralfsii, 316.
Strobi, 316.
Taxi, 316.
Sphrerosoma, 378. ostiolatum, 378.
Sphærotheca, 40%
Castagnci, 4.04.
pamosa, 404.
Sphinctrina, 373. turbinatn, 373.
Spiloma melanopum, 327.
Sporendonema casei, 326.
Sporidesmium, 327.
antiquum, 327 .
compactun, 327.
fungorum, 327.
melanopim, 327.
Lepraria, 327.
polymorplum, 327.
pyriforme, 327 .
scutclliure, 327.

Sporidesmium-continued. uniseptatum, 327.
Sporocybe, 348.
altemata, 348.
byssoides, 348 .
nigrella, 318.
Sporodum, 347. conopleoides, 347.
Sporoschisma, 327.
mirabile, 327. mirabile, 345.
Sporodinia, 408. diehotoma, 408.
Sporotrichum, 352. amrantiaeum, 352. elılorinum, 352. fcnestrale, 352. geochroum, 352. inosculans, 352. laxum, 352. sulphureum, 352.
Spumaria, 306. alba, 306.
Stachybotrys, 343. atra, 343 . lobulata, 343.
Stegia, 381. Ilicis, 381. Ilicis, 381.
Stemonitis, 308. areyrioides, 309. ferruginea, 309. fusea, 309. obtusata, 309 . ovata, 309. Physaroides, 309 . pulehella, 309. typlıoides, 309. violacea, 309.
Stegonospcrium, 324.
eellulosum, 324 .
Stereum, 270.
aecrinum, 271.
hirsutum, 270.
purpureum, 270.
рияригеит, 271.
rugosum, 271.
rugosum, 273, 271.
sanguinolentum, 271.
spadiccum, 270.
Stephensia, 377.
bombyeina, 377 .

Stictis, 375.
hysterioides, 375.
liehenieola, 375.
longa, 375 .
mierostoma, 375.
nivea, 375.
parallela, 375.
pallida, 375.
Phaeidioides, 375. radiata, 375 . sphaeralis, 373. versieolor, 375. Wanehii, 375.
Stigmatea, $3!2$.
Aleliemillæ, 392.
Chætomium, 392.
eonferta, 392.
Geranii, 392.
Polygonorum, 392.
Ranuneuli, 392.
Robertiani, 392.
Stilbacei, 339.
Stilbosphora, 324. angustata, 3\%4. ovata, 324.
Stilbum, 339.
anomalum, 340 .
aurautiaeum, 339.
bicolor, 339.
ceythrocephulum, 339.
fasciculatum, 339.
fimetarium, 339.
nigrum, 310.
pellucidum, $3 \cdot 10$.
piliforme, 339.
rigidum, 339.
tomentosum, 339.
turbinatum, 340.
vaporarium, 339.
rulgare, 34.0 .
Strigula Bubingtonii, 381.
Strobilomyces, 236. strobilaceus, 236.
Syzygites, 408.
megalocarpus, 408.
Tapezia, 369.
Telamonia, 191.
Tetraploa, 328.
aristata, 328.
Thamnomyces, 385.
hippotrichioides, 385.
Thelephora, 266.
anthoceplala, 267.

Thelephora-conlinued.
anthochroa, 270.
arida, 269,
biennis, 268.
byssoides, 269.
exsia, 268.
earyophyllæa, 267.
cretacea, 275.
eristata, 268.
dryina, 275.
fastidiosa, 268.
laciniata, 268.
Laurocè asi, 271.
laxa, 269.
mollissima, 268.
mollissima, 269.
olivacea, 269.
palmata, 267.
palmata, 268.
putcana, 269.
puteana, 269.
sebacea (see $\boldsymbol{A d d}$ denda).
Sowerbeii, 266.
terrestris, 267.
tuberosa, 267.
versicolor, 270.
Tilletia, 335.
Caries, 335.
Torulu, 326.
abbreviata, 326.
antennata, 327.
basicola, 326.
eylindriea, 326.
Eriophori, 326.
Eriophori, 347.
Grauninis, 326.
herbarum, 326.
Hysterioides, 326.
monilioides, 326.
ovalispori, 326.
Plantaginis, 326.
pulvillus, 326.
sphærireformis, 326.
Sporendonema, 326.
Torulacei, 325.
Trametes, 252, 253.
Trametes, 252. gibbosa, 253. odora, 253. Pini, 253. suaveolens, 253.
Tremella, 286.
albida, 287.
albida, 290.

Tremella-continued.
clavata, 288.
epigæa, 289.
ferruginea, 287.
fimbriata, 286. foliacea, 287. froudosa, 286. indecorata, 288. intumescens, 287. lutescens, 287. moriformis, 287. sarcoides, 288. tosta, 288. tubercularia, 288. versicolor, 288.
vesicaria, 287.
Tremellini, 286.
Trichia, 310.
Ayresii, 310.
cerina, 310.
chrysoperma, 311.
clavata, 310.
fallax, 310.
Lorinseriana, 310.
Neesiana, 310.
nigripes, 310 .
pyriformis, 310.
rubiformis, 310.
serotina, 310.
serpula, 311.
turbinata, 310.
varia, 311.
Trichobasis, 332.
Artemisiæ, 332.
Betæ, 332.
caricina, 332.
Cichoraccarum, 332.
Epilobii, 333.
Fabæ, 332.
Galii, 332.
Geranii, 333.
glumarum, 332.
Heraclei, 332.
Labiatarum, 332.
linearis, 332.
linearis, 332.
Lychnidcarum, 332.
oblongata, 332 .
Petroselini, 332.
Polygonorum, 332.
Pyrolx, 332.
Rubigo-vera, 332.
Scillarum, 332.
Sellecionis, 332.

Trichobasis-con-
Sympliti, 332. tinued.
suaveolens, 332.
Umbellatarum, 332.
Vincæ, 332.
Violarum, 333.
Triblidium, 379.
caliciiforme, 380.
Trichoderma, 357.
viridc, 357.
Trichodermacei, 356.
Trichogastres, 298.
Tricholoma, 97.
Trichothecium roseum, 135
Triphragmium, 329.
Ulmarix, 329.
Triposporium, 345.
elegans, 345.
Trochila, 381.
Trochila, 381.
Craterium, 381.
Lauro-Cerasi, 381.
Tuber, 376.
æstivum, 376.
bituminalum, 376 .
brumale, 376. dryophilum, 376. macrosporum, 3 ヶ 6. nitidum, 376 . puberulum, 376. rufum, 376. scleroneuron, 376.
Tuberacei, 376.
Tubercularia, 340. granulata, 341. nigricans, 341. persicina, 341. vulgaris, 340 .
Tuburcínia, 335. scabies, 336.
Trientalis, 336.
Tulostoma, 299. mammosum, 299.
Tympanis, 373. alnea, 374. conspersa, 374. Fraxini, 374. saligna, 374.
Typhula, 289.
erythropus, 284. filiformis, 285. gracilis, 285. Grevillci, 285.

Typhula-continued.
incarnata, 285.
muscicola, 285.
phacorrhiza, 284.
Uncinula, 404. adunca, 404. bicornis, 404.
Uredo, 331.
Alliorum, 331. bifrons, 331 .
Caryoplyylacearum, 331.

Circææ, 331.
conflucns, 331.
Equiseti, 341.
Filicum, 331.
Hypericorum, 331.
Potentillarum, 331.
pustulata, 331.
Quercus, 331.
Saxifragarum, 331.
Statices, 331.
Vacciniorum, 331.
Uromyces, 333.
Alliorum, 333.
apiculata, 333.
appendiculata, 333 .
Ficariæ, 333.
intrusa, 333.
Iridis, 333.
Limonï, 333.
Primulæ, 333.
Ulmariæ, 333.
Ustilago, 335.
antherarum, 335.
flosculorum, 335.
grammica, 335.
hypodytes, 335.
longissima, 335. Maydis, 335.
Montagnei, 335. olivacea, 335. receptaculorum, 335. Salveii, 335.
segetum, 335.
typhoides, 335.
urccolorum, 335.
utriculosa, 335.
vinosa, 335.
Valsa, 389.
Abietis, 390.
aglæostoma, 390.

Valsa-continued. ambiens, 390. angulata, 389. biconica, 390. bitorulosa, 390. chrysostroma, 390. concamerata, 389. controversa, 389. convergens, 390. coronata, 389. Cratægi, 389. detrusa, 389. dissepta, 389. dryina, 389. enterolcuca, 389. extensa, 389. fagimen, 390. fenestrata, 390. fibrosn, 389. furfuracea, 390. hapalocystis, 390. hypodermia, 390. Inncsii, 390. intexta, 390. Kunzei, 389. lсiphæmia, 390. lcucostoma, 389. luteoln, 389. microstoma, 389. nivea, 389. platanigera, 390. platanoides, 390.

Valsa-continued. profusa, 389. Prunastri, 389. pulchella, 390. pulehra, 390. quaternata, 390. quernea, 390. rhodophila, 390. salicina, 390. stellata, 389. stilbostoma, 390. suffusa, 390. syngenesia, 389. tetraplon, 390. tetraspora, 390. tetratrupha, 390. tiliaginca, 390. turgida, 390. vestita, 390.
Vermicularia, 318. atramentaria, 318. circinans, 318. dematium, 318. trichclla, 318.
Verpa, 359. conica, 359. digitaliformis, 359.
Verticillium, 349. apicnle, 349. distaus, 349 . epinyces, 349. lateritium, 349-408.

Verticillium-continued.
nanum, 349.
Vibrissea, 361.
truncorum, 361.
Virgaria, 352.
nigra, 352.
Volutella, 340.
Buxi, 340.
ciliata, 340.
hyacinthorum, 340.
melaloma, 340.
setosa, 34.0 .
Volvaria, 139.
Xenodochus, 328.
carbonarius, 329.
Xerotus, 227.
degener, 227.
Xylaria, 384.
bulbosa, 385.
carpophila, 384.
corniformis, 384.
digitata, 394.
Hypoxylon, $3 仓 4$.
pedunculata, 385.
polymorpha, 384.
Xylographa, 375.
Zasmidium, 406.
cellare, 407.
Zygodesmus, 352.
fuscus, 352.

PLATE 1.

Fig. 1. A. Agaricus grammocephalus. a. spores. b. spieules or sterigmata. c. sporophores or basidia. d. tissue of trama, B. A. eretaceus.
2. Peziza eupularis. a aseus. b. sporidium.
3. Hymenogaster tener. Showing spore surrounded by a sae, whieh sometimes eontains a seeond spore.
4. Puceinia graminis.
5. Tilletia Caries, a. spore sprouting, and erowned with proeesses. b. processes anastomosing. c. one of ditto, bearing seeondary spores (after Tulasne).
6. Badhamia, a. eyst, with spores. b. separate spore, to show that it is granulated where exposed, bit smooth where eovered. c. Enerthenema clegans.
7. a. Peronospora infestans, with hypha, ereet threads, and spores. b. Peronospora eurta.
8. Gymnosporium fulvum, Berle. and Curt.
9. a. Aseosporium deformans. b. sporidia simulating yeast-globules. c. A. bullatum, to show their further growth.
10. Tympanis saligna. Asci and stylospores on the same hymenium.
11. Neetria inamrata. a. elavate asei. b. eylindrieal asei. c. sporiclia from the latter.
12. a. sporidium of Hypoxylon fuseum. b. sporidium of Sphæria mbella. c. sporidium of S. palustris. d. sporidium of Valsa hapaloeystis. e. sporidium of Massaria foedans. f. sporidium of Sphæria maerotrieha. g. sporidium of Sphæria siparia.
13. a. stylospores of Ceuangium Fraxini ; b. spermatia of the same: the former from the base of the pyenidium, the latter from the upper part of the walls. c. spermatia of Peziza blandula, Tul., from the hymenium (hoth after Tulasne). d. spermatia of Valsa hypodermia.

PLATE II.

1. Merulius laerymans, nat. size, with a portion of the hymenium magnified.
2. Crueibulum vulgare, nat. size and slightly magnified, with two of the sporangia more highly magnified.
3. Cyathus striatus, nat. size and slightly magnified, with two of the sporangia more highly magnified.
4. Podisoma Juniperi-Sabinæ, nat. size.
5. Gymnosporangium Juniperi, nat. size.
6. Helotium versiforme, nat. size, with a seetion magnified.
7. Tremella sareoides, nat. size, with a seetion magnified.
8. Balanophora involucrata, Hook. f., nat. size.

PLATE III.

1. Agaricus phalloides, and section, half nat. size.
2. A. strobiliformis, young, nat. sizc.
3. A. excelsus, and section, half nat. size.
4. A. vaginatns, and scetion, half nat. sizc.
5. A. Ceciliæ, and section, half nat. sizc.
6. A. rachodes, and scetion, half nat. size.
7. A. cristatus, and seetion, nat. size.

if.F. . arier hit
Vincent Bronkes, Inap

PLATE IV.

1. A. mellens, and section, onc-third nat. size.
2. A. equestris, two-thirds nat. size.
3. A. imbricatus, and section, half nat. size.
4. A. sulfurcus, and scetion, two-thirds nat. sizc.
5. A. gambosus, and scetion, half nat. size.
6. A. albus, and section, two-thirds nat. size.
7. A. nudus, and section, small specimen.

VFitch del et, beth
Vincent Brooks. Tmp.

PLATE V.

1. A. personatus, and scetion, small specimen.
2. A. infundibuliformis, and section, small specimen.
3. A. laccatus, and section, nat. sizc.
4. A. radicatus, two-thirds nat. size, and seetion.
5. A. fusipes, and scetion, nat. size.
6. A. stipitarius, nat. sizc, with pilcus and seetion magnified.
7. A. dryophilus, and section, nat. size.

PLATE VI.

1. A. pelianthinus, and seetion, nat. size.
2. A. galopus, uat. size, with section magnified.
3. A. Iris, nat. size, with seetion magnified.
4. A. vulgaris, with section, nat. size.
5. A. stylobates, nat. size, with seetion and base of stem magnified.
6. A. tenerrimus, nat. size, with section and separate plant magnified.
7. A. pterigennus, nat. size, with two individuals and seetion magnified.
8. A. pyxidatus, nat. size, with seetion magnified.
9. A. mitis, nat. size, with seetion magnified.

Plate 6.

if e-al, (is) etath
Vincent Brooks, Tmp

PLATE VII.

1. A. bombyeinus, two-thirds nat. size, with section nat. size.
2. A. Loveianus, on A. ncbularis, two-thirds nat. size, with section nat. size.
3. A. speeiosus, two-thirds nat. size, with seetion nat. size.
4. A. leoninus, with seetion, nat. size.
5. A. chrysophrus, with section, nat. size.
6. A. clypeatus, one-third nat. size, inproperly referred in the text to A. rhodopolius.
7. A. prunulus, with scetion, half nat. size.

Vincent Hrooks. Imp.

PLATE VIII.

1. A. precox, with section, nat. size.
2. A. adiposus, with section, nat. sizc.
3. A. mutabilis, with section, nat. size.
4. Λ. fastigiatus, one-third nat. size, with section nat. size.
5. A. rimosus, two-thirds nat. size, with section nat. size.
6. A. trechisporus, with section, nat. size.

W.Fitch, del. ctinth.

Vincent Broaks, Imp.

PLATE IX.

1. A. erustuliniformis, with section, nat. size.
2. Λ. longieaudus, with section, nat. sizc.
3. Λ. melinoides, nat. size, with section marnified.
4. A. semiorbicularis, nat. size, with seetion magnified.
5. A. reticulatus, with section, nat. size.
6. A. mollis, with section, nat. size.
7. ^. Rubi, nat. size, witl seetion magnified.

PLATE X.

1. A. variabilis, nat. size, with section magnified.
2. A. campestris, dark var., two-thirls nat. size, with section nat. size.
3. A. campestris, another variety, with section, nat. size.
4. A. arvensis, small specimen.
5. A. cretaceus, two-thirds nat. size, with scetion magnificd. Variety with the stem less decidedly sunk into the pileus.
6. A. squamosus, two-thirds nat. size, with section nat. size.

[^47]Vincent Brooks, Imp

PLATE XI.

1. A. fascicularis, with section, nat. size.
2. A. velutinus, with section, nat. size.

3, 4. A. appendiculatus, in different conditions, nat. size, with sections slightly magnified.
5. A. Fœnisccii, nat. sizc, with section magnified.
6. A. finniputris, nat. size, with scetion slightly magnified.
7. A. scparatus, two-thirds nat. size, with section nat. size.

Plate 11

Writch, del et heth
Vincent Broaks,imp:

PLATE XII.

1. Coprinus atramentarius, slightly reduced, with section nat. size.
2. Bolbitius tener, with seetion, nat. size.
3. Cortinarius callochrous, with section, half nat. size.
4. C. anomalus, two-thirds nat. size, with seetion nat. size.
5. Paxillus involutus, small speeimen, with seetion.
6. Paxillus panuoides, nat. size.
7. Gomphidius gracilis, nat. size.

Plate 12

W. Ptch del. et lith

Fincent Brooks, Imp

PLATE XIII.

1. Hygrophorus distans, with section, nat. size.
2. Lactarius insulsus, small specinen, with section.
3. L. piperatus, small specimen, with section.
4. L. serifluus, with section, nat. size.
5. Russula heterophylla, two-thirds nat. size, with seetion nat. size.
6. R. vireseens, with section, two-thirds nat. size.
7. R. nitida, two-thirds nat. size, with section.
8. R. alutacea, two-thirds nat. size, with seetion.

[^48]
PLATE XIV.

1. Cantharcllus aurantiacus, small specimen, with section.
2. C. retirugus, nat. size.
3. Marasmius urens, with seetion, nat. sizc.
4. M. peronatus, with section, small specimen.
5. M. Orcades, with section, nat. size.
6. M. insititius, nat. size, with section slightly magnified.
7. M. rotula, nat. size, with section magnified.
8. M. graminum, nat. size, with section magnificd.

PLATE XV.

1. Hygrophorus cburneus, with section, nat. size.
2. Lentinus Dunalii, with section, nat. size.
3. Lenzites betulina, with section, nat. size.
4. Bolctus parasiticus, nat. size, on Scleroderma, not on Elaphomyces, as wrongly stated in the text.
5. Bolctus luridus, with section, small specimen.
6. B. cdulis, with section, half nat. size.

PLATE XVI.

1. Polyporus lentus, with section, nat. size.
2. P. lueidus, nat. size.
3. P. sulfureus, slightly reduced.
4. P. spumeus, nat. size.
5. P. ulmarius, half nat. size, with section.
6. P. vulgaris, nat. size, with pores magnified.

PLATE XVII.

1. Fistulina hepatiea, small specimen, with tubes magnified.
2. Hydnum repandum, with section, nat. size, and section magnified.
3. H. udum, nat. size, with spines magnified.
4. Thelephora anthoeephala, nat. size.
5. T. mollissima, mat. size.
6. T. sebacea, nat. size, with the border magnified.
7. Stereum hirsutum, nat. size.

PLATE XVIII.

1. Auricularia lobata, nat. size, and section magnificd.
2. Clavaria aucthystina, small specimen.
3. C. rugosa, nat. sizc.
4. C. umbrina, nat. size.
5. C. stricta, nat. size, and tip of brauch magnified.
6. Bulgaria sarcoides, nat. size, with scetion.
7. Hirncola Auricula-Judæ, nat. size, with section magnified.
8. Dacrymyces stillatus, nat. size, and section magnified.

Plate iss

rap
 An

PLATE XIX.

1. Cortinarius bolaris, nat. size, with scetion.
2. Nyctalis parasitica, nat. size, with scetion.
3. Marasmins Wynnei, nat. size, with seetion.
4. Lentinus cochleatus, nat. size, with seetion.
5. Dredalea quercina, small spceimen, with seetion.
6. Craterellus eornueopioides, nat. size.

-

PLATE XX.

1. Hyduangium carotrecolor, nat. size, with section magnified.
2. Hymenogaster citrinus, nat. sizc, with scetion magnified.
3. Phallus inpudicus, nat. sizc, with scetion.
4. Geaster finbriatus, nat. sizc.
5. Bovista nigrescens, nat. sizc.
6. Bovista plumbea, nat. size, with section.
7. Lycoperdon cælatum, nat. size.
8. Reticularia umbrina, nat. size, with capillitium (a) magnified.

PLATE XXI.

1. Cyathus vernieosus, nat. size and magnified. Two sporangia more magnified.
2. Spherrobolus stellatus, nat. size and magnified.
3. Anthina flammea, nat. size.
4. Helvella erispa, nat. size, with seetion.
5. Morehella eseulenta, nat. size.
6. Verpa digitaliformis, nat. size.
7. Spathularia flavida, nat. size.

Plate 21

PLATE XXII.

1. Leotia lubrica, nat. size, with seetion.
2. Geoglossum hirsutum, nat. size and magnified.
3. G. olivaceum, var., nat. size.
4. Peziza badia, nat. size.
5. P. mieropus, nat. size.
6. P. retieulata, nat. size, with section.
7. Bulgaria inquinans, nat. size, with section.

PLATE XXIII.

1. Ascobolus vinosus, nat, size and magnificd.
2. Tubcr æstivum, nat. size, and section magnified.
3. Elaphomyces varicgatus, nat. size and magnified.
4. Cordiceps militaris, nat. size, with head and perithecia magnified.
5. C. cntomorihiza, nat. sizc, with sections magnified.
6. C. alutacea, nat. size, with section.
7. Ergot, with C. purpurea, nat. size and magnified.

PLATE XXIV.

1. Xylaria Hypoxylon, nat. size and magnified.
2. X. bulbosa, nat. size and magnified.
3. Hypoxylon ustulatum, nat. size and magnified.
4. H. multiforme, nat. size and magnified.
5. Sphæria Bombarda, nat. size and magnified.
6. Nectria Peziza, nat. size and magnified.
7. Endogone pisiformis, nat. size and magnified.
8. Coprinus Hendersonii, nat. size, and seetion magnified.

W Fuck, del or het

Vinceme Broaks, $\ln _{1}$

ILLUSTRATED EDITION OF

BENTHAM'S HANDBOOK OF THE BRITISH FLORA.

In MIonthly Parts, price 2s. 6d., commencing January 1, 1863,

HANDBOOK OF THE BRITISH FLORA. (Illustrated Edition.)
 By GEORGE BENTHAM, F.R.S.,

PRESIDENT OF THE LINNEAN SOCIETY.

The favour with which Benthas's 'Handbook of the British Flora' has been received, and the high position it has taken among Professors and Teachers of Botany as a Class-book, have induced the Publishers, at great cost, to undertake the publication of an Illustrated Edition.

In this edition, the Text of which will be thoroughly revised by the Author, each Speeies will be illustrated by a fincly-executed WoodEngraving of the Plant and its Disscetions, from original drawings by W. Fitch. The anatomical details will faithfully represent the progress made in this department of Botanical Seience to the present time. The Introduction will be re-written and adapted to the present advanced state of science, and the Analytical Key, an im-
 portant feature of the Work from the valuable aid it affords the collector in determining and naming his specimens, will be rendered as perfeet as possible by the adoption of such improrements as experience and study have suggested.

The value of the Work, both to the Botanical Student and the Amateur, will thus be greatly enhanced by the inereased assistanee it will afford them in the prosecution of their studies and researehes; while the very moderate price at which it will be issued will bring it within the reach of those who are debarred from more costly but now antiquated works.

The 'Illustrated Handbook of the Britisf Flora' will be completed in twenty-five Montlly Parts, and will form two handsome volumes of about 1000 pares with nearly 1300 Engravings, a fow speeimens of which are interspersed in the present prospectus.

From the GARDENERS' CHRONICLE.
"We learn that there is in preparation a new edition of Bentham's eapital 'IIandhook ot the British Flowering Plants and Ferns,' in whieh every speeies will be illustrated by an original wood-engraving by Fiteh; special attention being given to the magnified dissections and parts of the plant, More than 150 of the engravings, which are excellent, and in every way worthy of the artist, are ahready finished."

(From the Preface.)

The Author's object has been to supply a defieiency which he believes has been much felt. He has beeu frequently applied to to recommend a work which should enable persons having no previous knowledge of Botany to name
 the wild flowers they might gather in their country rambles. He has always been much embarrassed how to answer this inquiry. The book he had himself used under similar circum. stances in a foreigu country, the 'Flore Française ' of De Candolle, is inapplicable to Britain. Our ownstandard Floras, whatevertheir botanical merit, require too much previous scientific knowledge for a beginner or mere amatcur to understand without assistance the characters by which the plants are distinguished from each other. Iu the ondeavour to compile a more practical guide to the botanical riches of our Islauds, the author has recalled to his mind the process by which he was euabled, near forty years since, without any previous acquaintance with the sulbject, to determine the wild plants he gathered in the neiglibourhood of Angoulême and of Montauban, the difficulties he had to surmount, and the numerous unistakes he was led iuto. Keeping these points in view, and talking, in some measure, De Caudolle's 'Flore' as his model, he has here attempted a descriptive cnumeration of all the plants wild in the British Isles, distinguished by such characters as may be readily perceived by the unlearued cye, and expressed, as far as lay in his power, in ordinary language, using such techmieal terms only as appeared indispensable for accuracy, and whose adopted meaning could be explained in the Work itself.

Supposing, however, that descriptions are so successfully drawn up that the young betanist may readily ideutify them with the corresponding plants, they aloue are insufficient; he cannot be expected to read them all through till he eomes to the one which he is in search of. Some method of arraugement must be adopted. They must be so classed as to enable him to refer, by as simple a process as possible, to the identical description belonging to his plant. If he knows the name, and wishes to ascertain what kind of a plant it designates, an Alphabetical Iudex is at once suggested. For the converse problem, where the plant is given and its name is sought for, some corresponding device must be resorted to, and the more simple it is the better it will auswer its purpose.
The method adopted is that originally proposed by Lamarek, and applied to the whole of the Freuch Flora. The general principle of this system consists in the searching for some striking character which will at once separate all the plants belonging to the Flora into two groups, then, takiug each group in succession, dividing it again into two smaller ones in the same way, and so ou until the species become isolated. Iu this process certainty and rapidity are the two great objects ; and the most important rules to follow are, first, the selection, at cach operation, of characters so absolute as to afford the least room for hesitation as to which of the two divisions the plantiu questiou belongs to ; and, secondly, the formation of subdivisions as nearly equal in point of uumber of species as possible.

[Specimen Page.]

1. Common Wintercress. Barbarea vulgaris, Br .

(Erysimum barbarea, Eng. Bot.t. 443. Wintercress. Yellow Rocket.)
A percmial of short duration, stiff and erect, green and glabrous, sparingly branched, 1 to 2 feet high. Leares mostly pinnate, with the terminal lobc large, broad, and very obtuse, whilst the lower ones are few, small, and narrow ; very rarely all the lobes are narrow, or some of the leaves oblong and undivided, but deeply toothed at the base. Flowers rather small, bright yellow. Pods usually very numerous, erect or slightly spreading, and crowded in a long densc raceme, each onc from $\frac{3}{4}$ to 2 , or even 3 inchos long, terminated by an erect, usually pointed style, varying from $\frac{1}{2}$ a line to 2 lines in length.

Hedges, or pastures and waste places, common all over Europe, in Russian
 Asia and northern America. Frequent in Britain. Fl. spring and summer. It varies much in the relative size of the lobes of the leaves in the size of the flowers, in the length and thickness of the pod, in the length of the style, etc. A form with a very short and thick style, is often considercd as a species, under the name of B. precox (Eng. Bot. t. 1129), but it passes by every gradation into those which have a pointed style of 2 lines, and which have again been distinguished under the name of 13 . stricta.

IV. WATERCRESS. NASTURTIUM.

Glabrous perennials or annuals, with the leaves often pinnate or pinnately lobed, and small white or yellow flowers. Calyx rather loose. Stigma capitate, ncarly scssile. Pod lincar or oblong, and usually curved, or in some species short like a silicule, the valves very convex, with the midrib scarcely visible. Sceds more or less distinetly arranged in two rors in each cell, and not winged. Radicle accumbent on the edge of the cotyledons.

Pod usually half an inch long or morc.
Flowers white

1. Common V.

Flowers yellow
2. Creeping V.

Now Rcady, illustrated with a Portrait, on Stcel, of Draparnaud, a Map of Geographical Listribution, two or more highly-finished Wood-ongravings of the Shell of cach Species, and of a living Animal of each Genus; price 10s. $6 d$. ,

THE

LAND AND FRESIIWATER MOLLUSKS

INDIGENOUS TO, OR NATURALIZED IN,

© lye 解ritisly

By LOVELL REEVE, F.L.S.

Abstract

"No division of natural science more directly, to our thinking, exhibits the value of eareful pruning than that brancb of couchology which treats upou the Land and Freshwater Mollusca of England. It is perhaps to be regretted that the lahours of Mr. Lovell Recve amoug exotic shells hare uot permitted him earlier than the present year to pulnlish a fascienlus of our native species. The puhlication of Mr. Jeffreys' work revived, to onr knowledge, much interest which was lying inert and dormant for lack of reliahle and casily-to-be-gotten uourishment; and now that Mr. Recre supplies us with a grammar and dictionary of i.lic two classes, our students may begiu to work anew, with the firmest faith iu the truthfulness of the diagnosis given for their guidance. But we should be doing Mr. Reere injustice if our remarks stopped short at this, and did not also bear upon what is, heyond doubt, the special value to adranced students of his work. The distrihution and representation throughout the glohe of European geuera and species, has ucver before been displayed either hy British or Contineutal conchologists; and for the sake of this alone, which Mr. Reeve attempts with a most instruetive degree of success, we thank him heartily for his hook. This 'study of our native Land and Freshwater Mollusks, with special reference to their relation with those of other countries,' is a work which Mr. Reeve's vast aequaintance with general conehology enables him to pursue, probnbly with more chance of success than nuy living naturalist; and we cannot hut think that the value of his conelusions is iucreased by the unity of his aims, and the sleady alnegation from the tempting questions imported iuto modern biologienl science hy the cravings of theoretical philosophy which he calibits throughout the work."-Paistienon.

ALSO BY THE SAME AUTHOR.

Elements of Conchology;

An Introduction to the Natural History of Shells, and of the Animuls which form them. With 62 Plates of Shells and of the Living Animals hy G. B. Sowbrby and R. Mileer. In 2 vols., price $\mathscr{L} 2.16 s$. coloured.

Conchologia Systematica.

A Complete System of Conchology; in which the Mollusen are deserihed and classified aecording to their Natural Organization and Hahits. With 300 Plates of Shells hy Sownebr. Two vols. tto, prico \&8. 8s, coloured.

Conchologia Iconica;

Or, Figures aud Descriptions of the Shells of the Mollusea, with Remarks on their Allinities, Synonymy, and Geographical Distrihution. The Drawings by G. B. Sownebr, F.L.S. Yublished Monthly in Parts, 108. colourcd; and in Monographs of each geuus separately.

LOVELL REEVE \& CO.'S

PUBLICATIONS IN

Blatural Somex, ©ravels,

ANTIQUITIES, ETC.

"None can express Thy works but he that knows them;

LONDON :

CONTENTS.

C.
FLOWERING FLANTS 3
COLONIAL AND FOREIGN FLORAS 5
FERNS 6
MOSSES 6
SEAWEEDS 6
I'UNGI 7
ZOOLOGY 7
INSECTS 8
MOLLUSKS AND SHELLS 8
GEOLOGY 10
CHEMISTRY 10
GEOGRAPIIY 10
VOYAGES AND TRAVELS 10
ANTIQUITIES 11
PHOTOGRAPIY 11
MISCELLANEOUS 13
SERIALS 14
NEW WORKS 15
FORTHCOMING WORKS 16

LOVELL REEVE \& CO.'S PUBLICAT'IONS.

FLOWERING PLANTS.

Genera Plantarum

Ad Exemplaria imprimis in Herbariis Kewensibus servata definita; auetoribus G. Bentham et J. D. Hooker. Vol. I., Pars I., sistens Dicotyledonum PolypetaIarum Ordines LVI: Ranıneulaceas-Connaracens.

Royal 8vo, 21 s .

The Field Botanist's Companion;

Being a Familiar Account, in the Four Seasons, of the Flowering Plants most common to the British Isles. By Thonas Moore, F.L.S., F.R.H.S. With coloured Figures and Disseetions by W. Fiteh of 110 speeies.

In One Volume, 24 coloured plates, 21 s.

Handbook of the Brilish Flora;

A Deseription of the Flowering Plants and Ferns Indigenous to, or Naturalized in, the British Isles. For the use of Beginuers and Amatenrs. By George Benthais, F.L.S.

In One Volume, 680 pages, 12 s.
An Illustrated Edition, with finely-exeeuted wood-engravings of every Species and its Dissections, from Origimal Drawings by W. Mrtch, now publishing in Monthly Parts, $2 s .6 d$.

Illustrations of the Nueva Quinologia of Pavon.

With Observations on the Barks deseribed, by John Eliot Howard, F ${ }^{\text {}}$.S., and 30 elaborately Coloured Plates by W. F'itcu.

Imperial folio, half-moroceo, gilt elges, $26.6 s$.

Select Orchidaceous Plunts.

By Robert Warner, F.r.II.S. With Notes on Culturo by B. S. Wildims, Author of 'The Orehid-Grower's Mamun,' and ' Hints on the Cultivation of l'erns;' assisted by some of the best Growers.
To be eompleted in Ten Quarterly Parts, imperial folio, ench, with four coloured plates, 10 s . 6 d .

Curtis' Bolanical Magazine:

Comprising the Plants of the Royal Gardeus of Kcw, and of other Botanical Establishments in Great Britain, with suitable Descriptions. By Sir W.J. Hooker, D.C.L., F.R.S., Director of the Royal Gardens of Kcw. 'Third Scries.

Royal 8vo, 6 coloured plates by Fiteh, $3 s$. 6 d . monthly.
Vols. 1. to XV111., each, with 72 coluured plates, 42 s .
A Completc Set of the Second Scrics, in 17 vols., new, £35. 14s. The only copy remaining.
Vols. 1. to XLV. of the First Serics, bound in 24 vols., whole calf (cxeept the last vol., which is in Numbers), $£ 18$.

The Floral Magazine.

Comprising Figures and Dcscriptions of New Popular Garden Flowers, and a Companion, containing New and Original Articles on Subjects connected with Floriculture. By the Rev. H. H. Dombrain.

Imperial $8 \mathrm{vo}, 4$ coloured plates by Andrews, $2 s .6 d$. Monthly. Vols. 1. and 11., each, with 64 colonred plates, 42 s .

The Rhododendrons of Siklim-Himalaya;

Being an Account of the Rhododendrons recently discovercd in the Mountains of Tastern Himalaya. By J. J. Hooker, M.D., F.1R.S.

1 mpcrial folio, 30 coloured plates by Fitch, £3. 10 s .

Illustrations of Sikkim-Himalayan Plants.

Chiclly selceted from Drawings made in Sikkin under the superintendence of the late J. F. Catheart, Esq., Bengal Civil Servicc. The Botanical Descriptions and Analyses by J. D. Hooker, M.D., F.R.S.

Folio, 24 coloured plates and illminated title-page by litch, £5. 5 s.

The Tictoria Regia.

By Sir W. J. Hookfr, F.R.S.
Eleplaut folio, 4 coloured plates by Fitch, 21 s .

Pescatorea.

Figures of Orchidaccous Plants, chicfly from the Collection of M. Pescatore. Edited by M. Linden, with the assistance of MM. G. Luddeman, J. E. Planchon, and M. G. Reichenbach.

Folio, Parts 1. to X11., each, 4 colourcd plates, 7 s .

The Tourist's Flora.

A Descriptive Catalogue of the Flowering Plants and Ferns of the British lslands France, Gcrmany, Switzerland, and Italy. By Joseph Woods. $8 \mathrm{vo}, 18 \mathrm{~s}$.

Journal of Botany and Kew Miscellany.

Original Papers by cmincut Botanists, Communientions from Botanical Travellers, etc. Edited ly W. J. Hooker, D.C.L., F.R.S.

Vols. IV. to 1 X ., each, 12 plates, some coloured, $£ 1.4 \mathrm{~s}$. A complete sct in 9 vols, half calf, £10. 16s.

The London Journal of Botany.

Edited by Sir W. J. Ноoкer, D.C.L., F.R.S., Director of the Royal Gardens of Kcw.

Vol. VII., completing the Series, 23 plates, plain, 3 us.

Icones Plantarum.

Figures of new and rarc Plants,. By Sir W. J. Hooker, D.C.L., F.R.S. Neir series.

Vol. V., 100 plates, 31s. 6 d .

COLONIAL AND FOREIGN FLORAS.

Flora Hongkongensis ;

A Description of the Flowering Plants and Ferns of the Island of Hongkong. By George Bentham, V.P.L.S. With a Map of the Island.

In One Volume, 550 pages, 16 s .

Flora of the British West Indian Islands.

By A. H. R. Grisebach, M.D., Professor of Botany in the University of Göttingen.

Parts I. to V., 5s. each. To be completed in 7 Parts.

The Botany of the Antarctic Toyage

of H.M.SS. "Erebus" and "Terror" in the years 1839-1843, under the command of Captain Sir J. C. Ross, R.N., F.R.S. By Joseph Dalton Hooker, M.D., I'R.S.

1. Flora of Lord Auckland and Campbell's Islands, and of Fuegia, the Falkland Islands, etc.

In 2 vols., 200 platcs, $£ 10.15 s$. coloured; £ 7.10 s. plain.
2. Flora of New Zealand.

In 2 vols., 130 plates, $£ 13.2 s .6 \mathrm{~d}$. coloured ; £9. 5s. plain.
3. Flora of Tasmania.

In 2 vols., 200 plates, $£ 17$. 10 s. colourcd ; £12. 10s. plain.

Cryptogamia Antarctica;

Or, Cryptoganic Plants of the Antarctic Islauds. Issued scparately.
In Onc Volume, quarto, et. 4s, coloured; e2. 17s. plain.

On the Flora of Australiu,

Its Origin, Affinitics, and Distribution; being an Iutrodnctory lissay to the 'Flora of 'Tasmania.' By Joserh Daiton Hooker, M.D., l.k.S.

128 pages, quarto, 10 s.

On the Flora of New Zealand;

Its Origin, Affinitics, and Gcographical Distribution; being an Introlnctory Fssay to the 'Flora of New Zealaud.' By Joseril Dabion Hooker, M.D., F.R.S.

45 pages, quarto, $2 s$.

Outlines of Elementary Botany,

As Introductory to Local Floras. By George Bentham, V.P.I.S. 45 pages, stitched, 2s. 6d.

FERNS.

The British Ferns.

Coloured Figures and Descriptions, with Aualyses of the Fructification and Venation, of the Ferns of the British Isles, Systenatically Arranged. By Sir W. J. Hooker, K.H., D.C.L., etc.

Royal 8 vo, 66 coloured plates by Fitch, £2. 2 s .

Garden Ferns.

Coloured Figures and Descriptious, with Analyses of the Fructification and Venation, of the Ferns best adapted for Cultivation in the Garden, Hothouse, and Conservatory. By Sir W. J. Hooker, K.H., D.C.L., cte.

Royal 8vo, 64 coloured plates by Fitch, £2. 2 s .

Filices Exoticre.

Ccutury of Exotic Ferns, particularly of such as are most deserving of Cultivation. By Sir W. J. Hoorer, K.H., D.C.L.

Royal 4to, 100 colourcd plates by Fitch, $\mathfrak{E 6}$. 11 s.

Ferny Combes.

A Ramble after Ferns in the Glens and Valleys of Devonshire. By Charlotte Chanter. Second Edition.

Fcp. 8vo, 8 coloured plates by Fitch, and a Map of the Connty, $5 s$.

MOSSES.

Handbook of the British Mosses;

Being a Description, with Coloured Figures and Dissectious, of all the Mosscs inhabiting the British Isles. By the Rev. M. J. Berkeley, M.A., F.L.S.
[In the press.

SEAWEEDS.

Synopsis of British Seaweeds.
Descriptions, with Critical Remarks, of all the known Species, abridged from Professor Harsey's 'Pifycologia Bietannica.'

A pocket volume, 220 prges, 5 s.

Phycologia Britannica.

A History of the British Seawecds; containing coloured Figures and Descriptions of all the Species of Alge inhahiting the Shores of the British Islands. By Willam Henry Haryey, M.D., F.R.S., Professor of Botany to the Dublin Socicty.

In 4 vols. royal $8 \mathrm{vo}, 360$ coloured plates, $\mathscr{E} 6$. 6 s.

Phycologia Australica.

A History of Australian Scavecds, containing Coloured Figures and Descriptions uniform with the 'Phycologia Britamica.' By Wilmam Henry Harvey, M.D., F.R.S.

> Vols. I. to IV., each, containing 60 coloured plates, 30 s . To be completed in Five Volumes.

Nereis Australis.

Figures and Descriptious of Marine Plants collceted on the Shores of the Cape of Good Hope, the extra-tropical Australian Colonies, Tasmania, New Zealand, and the Antarctic Regions. By Professor Harvey, M.D., F.R.S.

Impcrial 8vo, Two Parts, each, containing 25 coloured plates, $£ 1.1 s$.

FUNGI.

Outlines of British Fungology,

Containing Characters of above a Thousand Species of Fungi, and a Completc List of all that have been described as Natives of the British Isles. By the Rev. M. J. Berkeley, M.A., F.L.S. With Coloured Figures and Dissections of I70 Species by Fitch.

$$
\text { Svo, } 24 \text { coloured platcs, } 30 s \text {. }
$$

The Esculent Funguses of England.

An Account of their Classical History, Uses, Characters, Development, Nutritious Properties, Modes of Cooking, etc. By the Rev. Dr. Badhams. With 12 coloured plates.
[In the press.

Illustrations of British Mycology.

Figurcs and Descriptions of the Funguses of intcrest and novelty indigcnous to Britain. By Mrs. Ilussey.

Royal 4to; First Series, 90 coloured plates, 87.12 s .6 d ;
Second Series, 50 plates, \&4. 10 s.

ZOOLOGY.

Zoology of the Voyage of II.M.S. Samarang,

Under the commaud of Captain Sir Edward Belehcr, C.B3., F.R.A.S., during the Years 184.3-46. Edited by Artine Adams, F.J.S.

The Vertebrata, with 8 plates, by Johu Edward Gray, F.R.S.; the Fishes, with 10 plates, by Sir John Richardson, F.R.S.; the Mollusea, with 24 plates, by Arthur Adanis, F.L.S., and Lovell Recve, F.L.S.; the Crustacea, with 13 phates, by Arthur Adams, F.L.S.S, and Adiam White, R.J.S.

Hoyal 4tn, 55 colonred plates, $\mathrm{E} 3.10 s$.

INSECTS.

Curtis' British Entomology.

Illustrations and Deseriptions of the Genera of Insects found in Great Britain and Ircland, contaiuiug coloured figures, from nature, of the most rare aud beautiful species, aud, in many iustances, of the plants upon which thcy are found.

Complete in 8 vols., 8 vo, 770 colourcd copper plates, £16. 16s.
Curtis' British Fintomology in Monographs.

Orders.	Plates.		d.	Orders.	Plates.		2.	d.
APHANIPTERA	2	0 I		HyMenoptera	125		33	0
Colmortera	256	68	0	Lepidoptera	193		416	0
Dehmaptera	1	01	0	Neuboptera	13		07	0
Diotyoptera	1	01	0	Omaloptera	6		03	6
Diptera	103	212	0	Orthoptera	5	...	03	0
Hemipteka	32	016	6	Strepsiptera	3		02	0
Homoptera	21	011	0	Thiolioftera	9	...	05	0

A Reissue of the Orders Colcoptera, Diptera, Hymenoptcra, and Lepidoptcra, iu Monthly Parts, cach containing 5 plates, with text, price 2s. 6 d , commenced January Ist, 1863.

Insecta Britannica;

Vols. II. and III., Diptcra. By Francis Walier, F.L.S.
Svo, each, with 10 plates, 25 s .

MOLLUSKS AND SHELLS.

The Land and Ireshwater Molluskis

Indigenous to and Naturalized in the British Isles. By Loveli Reeve, F.L.S. With finely-cxecuted Wood-Engravings of the Shell of cach Specics by G. B. Sowerby, and of the Living Auimal of each Genus by O. Jewitt.
$8 \mathrm{vo}, 10 \mathrm{~s} .6 \mathrm{~d}$.

Elements of Conchology;

An Introduction to the Natural History of Shells, and of the Ammals which form them. By Lovell Reeve, F.L.S.

2 vols., 62 coloured plaics, £2. 16s.

Conchologia Systematica.

A Complete System of Conchology; in which the Lepades and Conchiferous Mollusca arc described and classified according to their Natural Organization and Habits. By Lovell Reeve, F.L.S.

2 vols, 4to, 300 coloured plates, £8. $8 s$.

Conchologia Iconica.

Figures and Descriptions of the Shells of the Mollusca, with Remarks on their Aftinitics, Synouymy, and Geographical Distributiou. By Lovell Reeve, F.L.S., F.G.S. The Drawings by G. B. Sowerby, F.L.S. Monthly. In Parts, demy 4to, each, containing 8 coloured plates, 10 s. Part 223 just published.

CONCHOLOGIA ICONICA IN MONOGRAPHS.

"This great work is intended to embrace a complete description and illustration of the Shells of Molluscous Animals; and so fur as wo havo seen, it is not sueh us to disappoint the largo expeetations that have been formed respecting it. The flgures of tho Shells aro all of full size : in the deseriptions a carcful annlysis is given of the labours of others; aud the nuthor has upparently apared no pains to make the work a standard authority on the sulject of which it trents."

Athendem.

GEOLOGY.

The Geologist.

A Magazine of Geology, Palæontology, and Mineralogy. Illustrated with hichly finished Wood Engravings. Edited by S. J. Mackie, F.G.S., F.S.A. Pnblished Monthly. Price ls. $6 d$.

Vol. V., numerous Wood Engravings, 18s.

CHEMISTRY.

Chemical Analysis, Qualitative and Quantilative.
By Dr. Henry M. Noad, F.R.S. [In the Press.
Part I., 'Qualitative,' in the Spring.

GEOGRAPHY.

A Survey of the Early Geography of Western Eu-

 rope, as comnected with the First Inhabitants of Britain, their Origin, Langnage, Religions Rites, aud Edifiees. By Henry Latwes Long, Esq.$$
8 \mathrm{vo}, 6 \mathrm{~s} .
$$

VOYAGES AND TRAVELS.

Three Cities in Russia.

By Professor C. Piazzi Sirythe, F.R.SS.L. \& E., Astronomer Royal for Seotland, Author of 'Tencriffe, an Astrononer's Experiment,' etc.

2 Vols., post 8vo, Maps and Wood-Engravings, $26 s$.
Travels on the Amazon and Rio Negro,
With an Acconnt of the Native Tribes, and Observations on the Climate, Gcology, and Natural History of the Amazon Valley, By Alfred R. Wallace, Esq. With Remarks on the Voeabularies of Amazonian Languages, by R. G. Latham, M.D., F.R.S.

Royal 8vo, 6 plates and maps, 18 s.

Western Himalaya and Tibet;

Narrative of a Journey throngh the Mountains of Northern India. By Tnomas 'liomison, M.1)., Assistant-Surgeon, Bengal Army.

8vo, Tinted Lithographs and Map, 75 s.

Travels in the Interior of Brazil,

Priucipally through the Northern Provinces and the Gold and Diamond Districts. By George Gardner, M.D., F.L.S. Second Edition.

Svo, Plate and Map, $12 s$.

Narrative of a Walking Tour in Brittany.

By John Mounteney Jephson, B.A., F.S.A. Accompanicd by Notes of a Photographic Expedition by Lovell Reeve, F.L.S.
Ruyal 8vo, with Map by Arrowsmith, and Stcreoscopic Frontispiece, 12s.; or with 90 Photographic Vignettes, £2. 2s.
** Issued separately are 90 stereographs, mounted on cards for use in the Stcreoscope, in box with lock and key, e4. 4s.

The Convay.

Narrative of a Walking Tour in North Wales; accompanied by Descriptive and Historical Notes. By J. B. Davidson, Esq., M.A.

Extra gilt, 20 stereographs of Welsh Scenery, 21s.

ANTIQUITIES.

Manual of British Archaology.

By the Rev. Charles Boutell, M.A.
Contents.-Chap. 1. Architecture.-2. Architectural Accessories. - 3. Sepulchral Monuments.-4. Heraldry.-5. Seals.-6. Coins.-7. Palrography, Illuminations and lnscriptions.-8. Arms and Armonr.-9. Costumes and Personal Ornaments.-10. Pottery, Porcelain and Glass.-11. Miscellancous Subjects.

$$
\text { Royal } 16 \mathrm{mo}, 20 \text { coloured plates, } 10 s .6 d .
$$

Hora Ferales.

Studies in the Archæology of the Northern Nations. By the late Joun M. Kemble, M.A. Edited by R. G. Lathab, M.D., F.R.S., and Augustus W. Franks, FiS.a.
[In the press.
4 to, 30 plates, somc colourcd, £3. $3 s$.

PHOTOGRAPHY.

Sletches in India.

Taken at Hyderabad and Sccunderabad, in the Madras Presidency, By Captain Allan N. Scott, Madras Artillcry. Edited by C. R. Weld.

100 Photographic Vignettcs, \&3. $3 s$.
Mounted as Slides for the Stereoscope, CJ . is .

The Stereoscopic Magazine.
 A Gallery for the Stercoscope of Landscape Seenery, Architecture, Antiquities, Natural Mistory, Rustic Character, etc. With Deseriptions. 2s. 6d. Monthly. 3 vols., each completc in itsclf and containing 50 Stercographs, \&2. 2s.
 The Stereoscopic Cabinet.
 Monthly Packet of Slides for the Stereoscope.
 3 slides, 2s. 6d. Monthly.
 The Foreign Stereoscopic Cabinet.
 Monthly Packet of Forcign Slides for the Stcreoscope. 3 slides, 2s. 6d. Monthly.

Stonylurst College and its Environs
Plotographed by Roger fenton, Esq.
15 slides, 15 s.

Tlue Convay Stereograplus.

20 slides, 20 s.

The Brittany Stereographs.

90 slides, in box with lock aud key, e4. 4s.
The Isle of Wight Stereograplus.
22 slides, 21 s.
Interior of the British Museum.
By Roger Fenton, Estq.
25 slides, 25 s.

English Custles and Abbeys.

14 slides, 14 s.
Foreign Castles and Abbeys.
24 slides, 24 s .
English Catluedrals and Clurches.
21 slides, 21 s .
Foreign Cathedrals and Clurches.
3 S slides, 38 .
Calvaries and Crosses.
10 slides, 10 s.

Druidical Remains.

6 slides, $6 s$.

${ }^{*}{ }^{*}$ Any of the above Stercographs may be had singly at $1 s$. each; also a List of 440 subjects.

Folding Stercoscopes in cascs, $3 s$. $6 d$. each.

MISCELLANEOUS.

The Gate of the Pacific.

By Captain Bedford Pim, R.N., F.R.G.S., Assoc. Inst. C.E.
Demy 8vo, 8 Chromo-Lithographs, Maps and Plans. $18 s$.
Phosphorescence:
Or, the Emission of Light by Minerals, Plants, and Animals. By Dr. T. L. Phipson, F.C.S., Member of the Chemieal Soeiety of Paris, etc. ete.

Numerous Illustrations, $5 s$.

Shakespeare's Sonnets,

Faesimile, by Photo-Zincography, of the First Printed edition of 1609. From the Copy in the Library of Bridgewater House, by permission of the Right Hon. the Earl of Ellesmere.

$$
10 s .6 d .
$$

Literary Papers on Scientific Subjects.

By the late Professor Edward Forbes, F.R.S., seleeted from his Writings in the 'Literary Gazette.' With a Portrait and Memoir.

Small 8vo, 6s.
A Treatise on the Growth and Future Treatment of Timber Trees. By G. W. Newton, of Ollersett, J.P. Half-bound calf, 10s. $6 d$.

Parlis and Pleasure Grounds;

Or, Practical Notes on Country Rcsidences, Villas, Publie Parks, and Gardens. By Charles H. J. Smitit, Laidseape Gardener. Crown 8vo, $6 s$.

The Planetary and Stellar Universe.

a Series of Leetures. With Illustrations. By ll. J. Mann.
$12 \mathrm{mo}, 5$ s.
The Artificial Production of Fish.
By Piscarius. Third Edition. 1 s.

NEW SERIES OF BRITISH NATURAL HISTORIES.

British Flora.

By G. Bentham. 12s.
[Ready.
British Fungology.
By the Rev. M. J. Berkeley. 30s.
[Ready.

British Ferns.

By Sir W. Ноoker. 42 s .
[Ready

British Field Plants.

(The Field Botanist's Companion.) By Thomas Moore. 21s. [Ready.

British Land and Freshwater Molluslis. By Lovell Reeve, F.L.S. 10s. 6 d.

British Mosses.

By the Rev. M. J. Berkeley.

SERIALS.

Mllustrated Handbook of the British Flora.

By G. Bentuam, F.R.S., Presideut of the Liuncan Socicty. Wood Eugravings, with Dissections, of every Species, from original Drawings by W. Fitch.
$2 s .6 \mathrm{~d}$. Mouthly.

Botanical Magazine.

New and Rare Plants. With Deseriptions by Sir W. Hooker, D.C.L., F.R.S., and 6 coloured plates, with Dissections, by W. Fich. $3 s .6 d$. Monthly.
Floral Magazine:
New Popular Garden Flowers. With Deseriptions by the Rev. H. H. Dombrain, 4 coloured plates by Audrews, and a Conpanion containing News and Origiual Articles on Subjects conneeted with Floriculture.
$2 s .6 d$. Monthly.
Select Orchidaceous Plants.
By R. Warner, F.R.H.S.
Folio, 4 superbly coloured plates, 10 s . 6 d . Quarterly.
Phycologia Australica.
By Dr. Harver, f.r.S.
6 coloured plates, 3s. Monthly.
Conchologia Iconica.
By Lovell Reeve, F.I.S.
4 to, 8 coloured plates, 10s. Mouthly.

Geologist.
 Illustrated Magazine of Geology, Palreontology, and Mineralogy. Wood engravings, $1 s$. $6 d$. Monthly.

Curtis' British Coleoptera.
 5 coloured copper-plates, 2s. Gdd. Mouthly.

Curtis' British Lepidoptera.
5 coloured copper-plates, $2 s .6 d$. Monthly.
Curtis' British IIymenoptera.
5 coloured copper-plates, $2 s .6 d$. Monthly.

Curtis' British Diptera.

5 coloured copper-plates, $2 s .6 d$. Monthly.

Stereoscopic Mayazine.

3 stercographs, with Descriptions, $2 s .6 d$. Monthly.
Stereoscopic Cabinet.
3 stereoscopic slides, 2s. 6d. Monthly.
Foreign Stercoscopic Cabinet.
3 Foreign stercoscopic slides, $2 s .6 d$. Monthly.

RECENT WORKS.

Captain Pim's Gate of the Pacific.
8 Chromo-Lithographs, Maps, and Plans. 18s.

> Reeve's British Land and Freshwater Mollisks. Wood Engravings. 10s. 6 d .

Dr. Phipson's Phosphorescence.
Coloured Frontispiece and Wood Engravings, $5 s$.
Moore's Field Botanist's $\underset{\substack{24 \\ \text { colourca plates, 21s. }}}{\substack{\text { Compurion. }}}$
Professor Smyth's Three Cities in Russia. 2 vols., Maps and Illustrations, 26 s .
Shukespear'e's Sonnets. Yacsimile of the First Edition. $10 s .6 d$.
Howard's Nueva Quinologia. 30 colourcd plates, L6. 6s.

Hooker's British Ferns.
 66 coloured plates, 42 s.

> Hooker's Garden InTerns.
> 64 coloured plates, 42 s .

Berkeley's ITungology.
24 coloured plates, 30 s.
Captain Scott's Sketches in India.
100 photographs, with Descriptions, £3. Bs.
Grisebach's Flora of the West Indies.
Harvey's Phycologia Australia.
Vols. I. to IV., each 30 s .

FORTHCOMING WORKS.

Chemical Analysis, Qualitative and Quantitative. By Dr. Henry M. Moan, P.R.S. [Part I., Qualitative, in the Spring.
Bentham's Illustrated Handbook of the British Flora. [Publishing Monthly.
Curtis' British Entomology in Orders.

Colieoptera.	[Publishing Monthly.
Lepidoptera.	$"$
Hymfnoptera.	$"$
Dipteral.	$"$

Badham's Esculent Tunguses.
Berkeley's Mosses.
[Nearly ready.
[Nearly ready.

Horace Ferules.

By the late John M. Kemble, M.A. Edited by Dr. Latham and A. W. Franks.
[Nearly ready.
Seemann's Flora Vitiensis.

Flora Australiensis :

A Description of the Plants of the Australian Territory. By George Bentham, F.R.S., P.L.S., assisted by Ferdinand Mueller, M.D.,F'R.S. aud I.S., Governmont Botanist, Melbourne, Vietoria.
dipt

[^49]
[^0]: * As, for cxample, in Phillip's's Prize Essay on the Potato Murrain, Journ. of Royal Agrieultural Socicty, vol. vii. p. 309.
 + The Frenelh word Champignon was originally searecly of wider signifieation than our word Mushroom, though now elassical in the sense of Fungi generally. The German word Pilz (a corruption of Boletus) is used to denote the softer linds, while Schurmm generally denotes auch Fungi as Polypori.

[^1]: * The whole question is discussed in Berkeley's 'Introduction to Cryptogamic Botany.'
 $\dagger \Lambda_{s}$ in the gelatinous matter so common on gravel walks after rain, colled Nostoc, which has the habit at once of a Lichen, Alga, or Fungus.

[^2]: * This genus is indeed sometimes associated, but wrongly, with the geners of the next division.

[^3]: * We have no British represcutative of tho Podaxinei, which resemble in many respects Boleti and Agnrics.

[^4]: * The word perithecium more properly applies, according to its etymology, to the Spheriacei and their close allies, but it would be refining needlessly to gire the organ a distinet namo here.

[^5]: * This, however, is probably merely a state of Nectria cimabarina.

[^6]: * It is somothing like the "sareodo" of Dujardin, and not "cellulose."
 \dagger Exactly as in the achenia of many Compositce, as, for example, in those of Rhagradiolus.

[^7]: * Copies of many of these drawings have been forwarded to me by the kindness of Frics, and from these 1 lave already been enabled to recognize one of the very few new species (Agaricus gliodermus) as 13ritish.

[^8]: * Since tho above was written, De Bary has stated his views more explieitly respecting tho Myyxogastres. In Lycogala opidendrum he figures filaments very like thoso of Dasygloea, a genus of fresh-water Alga. It appears also, as Mr. Currey has seen in Trichia, that the young germinating spores in many species assume the eharacters of zoospores; but this does not prove that these produetions aro animals any more than that those Algre in which zoospores oecur, are so. Still less doos the existenee of sareode tend to this conelusion, when it is remembered that eellulose, the peeuliar distinetive mark in regetable strueture, oecurs in uudoubted animals.

[^9]: * Marvey, 'Nereis Borenli-Americana,' part i. p. 6.

[^10]: * Together with tho blood-rain, gelatinous spots of a bright yellow, blue, pink, grey, white, etc., often appear on the rice paste, identical in structure with the red. The matter which appears on meat in damp weather scems to be similar. The whole subject requires further investigation.

[^11]: * Spores of Fungi, for instance, have been detected apparently uninjured in the dust of the trade winds, in flakes of snow collected from the air, on the mucous surfaces of the internal orguns of animals, in the dejections of cholera, ctc.

[^12]: * These species, which grow on living leaves, are now commonly referred to the genus Peronospora. They doubtless form a distinet group, but if these be separated, the genus Botrytis will no longer exist, for the others will pass to Verticillium, Polyactis, and other gencra. Nothing ean be more absurd than to break up a genus, and diseard the original title altogether. Micheli's Botrytis is evidently the same with Polyactis, and as that genus is now almost muiversally adopted, the name Botrytis ought to be reserved for Botrytis parasitica and its allice, as that species was the first which received the gencrie name after the time of Micheli.
 + As in the geuus Iraucheria.

[^13]: * The Yeast-plant may secm an exception. It must be remembered, however, that it is originally derived from a Mould or Moulds, which have two distinet parts, the spawn, or, as it is called in this ease, hypha, and the fruitbearing threads.
 \dagger Aecording to Bonorden, in some cases the external cells of the stem form the fructifying portion of the gills, but this is exceptional, the fructifying tissue of those organs being in general derived from the cells of the cap or pileus.

[^14]: * Sce 'Propagation of Bunt:' Berkeley, in Journ. of Hort. Soc. vol. ii. p. 107.
 \dagger These points aro discussed in the 'Introduction to Crepptogamic Botans,' p. 10, but they involve abstruse matters which would be out of place here.

[^15]: * The best general rule is to admit nothing as a real species of Fungus which does not bear fruit. It is possible that such formations as Sclerolium durum may be due to half-a-dozen different Fungi. Sclerolium complanatum and S. scutcllatum both give rise to the same specics of Pistillaria. As, however, some persons may wish to know what specties have been deseribert, I shanl give them in an uppendix.

[^16]: * 'The Esculent Funguscs of England,' by the Rev. Dr. Badham, with 20 coloured plates ; 8 vo .
 †'Illustrations of British Mycology;' by Mrs. Inussey, with 140 coloured plates; 4 to.

[^17]: * For a singular account of its application to the purposes of intoxication, and the effects it produces, sce Lindley's 'Vegetable Kingdom,' p. 38. Λ still worse abusc is made by the people in West Africa of the magnificent Polyporus sacer, who worship it, like some other natural objects, as a god.

[^18]: * 'Histoire Naturelle des Végétaux Parasites qui eroissent sur l'Tfomme et sur les Animaux vivants.' Paris, 8vo. 1853. Par Charles Robin.

[^19]: * Seo 'Lancet,' Scpt. 17, 1859.

[^20]: * It is unfortunate that the word Mildew (Mehl Than, meal dew) should be applied to any Fungi besides the white Leaf Moulds. Its application to a particular disease of wheat is univeraally diffused, and cunnot be cheeked, though constantly inducing error.

[^21]: * Stecping the wheat in solutions of mineral salts, puddling it with quickline stirred up in boiling water, and plain washing with water or brine, aro amongst the means employed. The most efficacious, perhops, is one used in France-viz. stceping tho grain in a strong solution of Glauber's salt (sulphate of sorla), and then dusting it with quicklime, the effect of whieh is to coat the sceds with sulphate of lime or gypsum, and to set free caustic soda for the destruction of the Bunt spores. Where solutions are used, the Bunted grains which have not been broken in threshing are skimmed off, and it is probable from tho other practices, where the contents of tho mbroken Bunts can searecly be affected, that thoso spores of the Bunt only are injurious which aro seattered over the Wheat.

[^22]: * It should seem that gangrenc is induced only where Ergot is used for some time continuously. Dreadful cases arise occasionally from the continucd unauthorized use of solution of Ergot, to one of which I ean myself bear testimony.

[^23]: * These attempts have been confined principally to Thber melanosporum, astivum, and perhaps mesentericum.

[^24]: * The reader should refer to the article Fairy Rings, in Mrs. Mussey's 'Illustrations of British Mycology,' appended to her account of Agaricus Oreades.

[^25]: * Mr. Currey has induced tho Trgot of tho common Reed to fructify by kocping the stem immorsed in water.

[^26]: * Besides the above Noz. 38, 30, I find Ω specics on the borders of fir-woods without the soent of now meal, with the following characters. Pilens umbonate, dark red-brown, sometimes minutely squamulose, but sourcely streaked; stem solid at first, then hollow, mealy and whito above, fibrilloso below; gills emarginate, with a decurrent tooth. Further study will alone show whether this is Ω distinct specios.

[^27]: * This is an exception to the general rule that Schwamm indiontes one of the harder, corky Fungi.

[^28]: * I have a speeimen from Dr. Stephens, gathered at Bristol, marked by him A. clavus, Bull, whieh is apparently Bulliard's plant.

[^29]: * The Cortinarii have red-ochraccous spores (peroxide of iron), and a veil consisting of spider-web threads.

[^30]: * The colours of Cortinarii are not only very fugitive, but they change greatly according to the condition of the atmospherc. Those, therefore, which are mentioned, except something is said to the contrary, belong only to the young plant before it has been exposed to weather. The colour of the spores in most of the species is that of peroxide of iron ; in a very few exceptional cases it is of a bright tawny.

[^31]: * Some of the Polypori, as P. versicolor, for example, have the trama, though

[^32]: * In some Auricularini there are spurious papillm which are wholly aceidental, and not essential, like the granules of Grandinia. Craterellus is confluent with Canlharellus, and Thelephora with Grandinia, but the veins of the one and the papille of the other are less determinate. The folds in Auricularia are still less essential, and depend upon the nature of the texture. Natural, however, as tho whole group is, it is diffieult to define it in words.

[^33]: * The spores are the prominent feature of this family, and not the threads, as in the following.

[^34]: * This species occurred also on an clm plank, pieked up by Captain Penny in lat. $76^{\circ} 2^{\prime} \mathrm{N}$., long. $96^{\circ} \mathrm{W}$

[^35]: * All the species of this Order and the next are developed at first on living plants. It is not, therefore, thought necessary in every case to stato that their place of growth is on living leares, stems, etc.

[^36]: * Tulasne believes that all the species of this genus, as well as Lecythea, are more conditions of Aregma, Puccinia, and Melampsora; and it is very probable that he is correet. In some eases, as in T. linearis, the spores scem to be merely transitional forms ; in other cases, they are a different form of fruit. All the supposed species which have been recorded as British, however, are enumerated here, as in the case of the other doubtful Comiomycetes.

[^37]: * There is reason to believe that these two last, as also Atractium flammerm, are merc conditions of ascigerous Fungi. All the specics of tho following genus are probably subject to a similar remark.

[^38]: * In the more typical species, there is a distinct membranc, which shells off; and where this does not exist, the threads are dark and dingy, but never white, or of pure tints.

[^39]: * Perhaps Dematiei should be restricted to such genera as IIelminthosporium, Gitemia, cte., and Mucedinei to the white and coloured species, a distinct order, including the aberrant forms of either order.

[^40]: * Sinco the discovery of the scoond form of fruit, of which Corda knew nothing, it is expedient to adopt his generic name, which I do with reluetanee, as P. parasitica seems more entitled to the name of Botrytis than other allics, after Polyactis is removed. Corda's Perorospora, moteover, ineluded only sueh speeics as havo non-septate threads.

[^41]: * I have omitted O. Tuckeri, O. Balsamii, O. erysiphoides, O. Leucoconium, and O. monilioides, as they are all mero states of different species of Erisyphe.

[^42]: * It may be doubted whether there are any geuuine speeies of this genus, whose characters are very uneertain. They are mostly conidiferous states of other plants.

[^43]: * Peziza amorpha, P., is referred by Fries to Corticium, but it has perfeet asci. As I have not seen fresh specimens, I caunot determine to what genns it belongs.

[^44]: * This appears to be the lowest form under whieh Discomycetes ean appear, the way being made for it by Propolis. In outward aspeet it has little resemblance to more typienl genera.

[^45]: * As far as Slegia Llicis is concerned, this genus is possibly not different from Trochila, Fr.

[^46]: * A Spharopsis, according to Currey.

[^47]: WFisch, del et lith

[^48]: Whicch, del.et hith

[^49]:

 20 26
 cherth

 $$
 681
 $$

 chesket? graberesmernemerner yere zise
 zite

 $$
 \frac{18}{31}
 $$

 > vicisis: $+8,7$ in 318

